G.hn


G.hn is a specification for home networking with data rates up to 2 Gbit/s and operation over four types of legacy wires: telephone wiring, coaxial cables, power lines and plastic optical fiber. A single G.hn semiconductor device is able to network over any of the supported home wire types. Some benefits of a multi-wire standard are lower equipment development costs and lower deployment costs for service providers.

History

G.hn was developed under the International Telecommunication Union's Telecommunication Standardization sector and promoted by the HomeGrid Forum and several other organizations. ITU-T Recommendation G.9960, which received approval on October 9, 2009, specified the physical layers and the architecture of G.hn. The Data Link Layer was approved on June 11, 2010.
Key promoters CEPCA, HomePNA, and UPA, creators of two of these interfaces, united behind the latest version of the standard in February 2009.
The ITU-T extended the technology with multiple input, multiple output technology to increase data rates and signaling distance. This new feature was approved in March 2012 under G.9963 Recommendation.
Amendments to the main G.9960/G.9961 added new functionalities to the base standard:

Technical overview

G.hn specifies a single physical layer based on fast Fourier transform orthogonal frequency-division multiplexing modulation and low-density parity-check code forward error correction code. G.hn includes the capability to notch specific frequency bands to avoid interference with amateur radio bands and other licensed radio services. G.hn includes mechanisms to avoid interference with legacy home networking technologies and also with other wireline systems such as VDSL2 or other types of DSL used to access the home.
OFDM systems split the transmitted signal into multiple orthogonal sub-carriers. In G.hn each one of the sub-carriers is modulated using QAM. The maximum QAM constellation supported by G.hn is 4096-QAM.
The G.hn Media Access Control is based on a time division multiple access architecture, in which a "domain master" schedules Transmission Opportunities that can be used by one or more devices in the "domain". There are two types of TXOPs:
Although most elements of G.hn are common for all three media supported by the standard, G.hn includes media-specific optimizations for each media. Some of these media-specific parameters include:
G.hn uses the Advanced Encryption Standard encryption algorithm using the CCMP protocol to ensure confidentiality and message integrity. Authentication and key exchange is done following ITU-T Recommendation X.1035.
G.hn specifies point-to-point security inside a domain, which means that each pair of transmitter and receiver uses a unique encryption key which is not shared by other devices in the same domain. For example, if node Alice sends data to node Bob, node Eve will not be able to easily eavesdrop their communication.
G.hn supports the concept of relays, in which one device can receive a message from one node and deliver it to another node farther away in the same domain. Relaying becomes critical for applications with complex network topologies that need to cover large distances, such as those found in industrial or utility applications. While a relay can read the source and target addresses, it cannot read the message's content due to its body being end-to-end-encrypted.

Profiles

The G.hn architecture includes the concept of profiles. Profiles are intended to address G.hn nodes with significantly different levels of complexity. In G.hn the higher complexity profiles are proper supersets of lower complexity profiles, so that devices based on different profiles can interoperate with each other.
Examples of G.hn devices based on high complexity profiles are Residential Gateways or Set-Top Boxes. Examples of G.hn devices based on low complexity profiles are home automation, home security and Smart Grid devices.

Spectrum

The G.hn spectrum depends on the medium as shown in the diagram below:

Protocol stack

G.hn specifies the physical layer and the Data Link Layer, according to the OSI model.
The PMD sub-layer is the only sub-layer in the G.hn stack that is "medium dependent". The rest of sub-layers are "medium independent".
The interface between the Application Entity and the Data Link Layer is called A-interface. The interface between the Data Link Layer and the physical layer is called Medium Independent Interface. The interface between the physical layer and the actual transmission medium is called Medium Dependent Interface.

Status

Recommendation G.9960 was granted approval at the October 2009 Study Group 15 plenary meeting.
Recommendation G.9961 received approval on June 11, 2010. During that meeting, concerns about regulatory conformance were raised and an amendment to the G.hn standard was proposed that eliminated the passband and reduced the baseband operational spectrum. Other changes included in the amendment included a reduction of transmit power to meet regulatory complaints raised at the meeting. In June 2011, during a joint Forum held by ITU-T, ITU-R and other organizations, it was recognized that "ITU-T G.hn was considered to have electromagnetic compatibility and mitigation techniques that go well beyond those considered essential for protecting radio services", and that "Non-ITU compliant home network equipment may cause problems".
In October 2010, Sigma Designs announced the first G.hn-compliant chipset, called CG5110. In January 2011, Lantiq introduced a family of G.hn-compliant chips, called HNX176 and HNX156.
In June 2011, four silicon vendors announced their participation in an open interoperability plugfest in Geneva, hosted by HomeGrid Forum, Broadband Forum and ITU.
The HomeGrid Forum showcased the world's first live public demonstration of G.hn interoperability at CES, January 10–13, 2012. HomeGrid Forum members Lantiq, Marvell, Metanoia, and Sigma Designs joined together to highlight real-world G.hn capabilities.
In December 2012, Marvell and HomeGrid Forum announced that the first compliance certified G.hn silicon.
Since then, the number of certified products has increased substantially, including products from ZTE, Zowee Smart Manufacturing Co, Zinwell Corporation, Sendtek Corporation, Prime Electronics & Satellitics Inc, Netbit Electronics, Huawei Technologies, HOMA Technologies JSC, devolo AG, D-Link Corporation, Comtrend Corporation, CIG, ARRIS Solutions, Actiontec Electronics.

Support

HomeGrid Forum

The HomeGrid Forum is a non-profit trade group promoting G.hn. HomeGrid Forum provides technical and marketing efforts, addresses certification and interoperability of G.hn-compliant products, and cooperates with complementary industry alliances.
HomeGrid Forum members include :
Vendors promoting G.hn include MaxLinear, Lantiq, devolo AG, microprocessor manufacturer Intel, system-on-a-chip vendor Sigma Designs, and Xingtera, which announced a product in January 2013.
The first live public demonstration of G.hn interoperability was shown at CES, January 10–13, 2012 by Lantiq, Marvell Technology Group, Metanoia, and Sigma Designs.

Service providers

On February 26, 2009, as part of a HomePNA press release, AT&T expressed support for the work developed by ITU-T creating standards for home networking, including G.hn.
Service providers like AT&T promoted G.hn for:
Other service providers that are contributors to the work ITU-T Study Group include British Telecom, Telefónica, and AT&T.

Equipment vendors

On April 2008, during the first announcement of HomeGrid Forum, Echostar, a manufacturer of set-top boxes for the service provider market, expressed its support for the unified standard:

Consumer electronics

On March 2009, Best Buy joined the board of directors of HomeGrid Forum and expressed its support for G.hn.
Panasonic, one of the largest manufacturers of consumer electronics, is also a contributor member of HomeGrid Forum.

Analysts

In 2008, several marketing firms promoted G.hn and made optimistic predictions.

Other organizations

On February 25, 2009, three home networking organizations that promoted previously incompatible technologies, announced they agreed to work with Homegrid Forum to promote G.hn as the single next-generation standard for wired home networking, and to work to ensure coexistence with existing products in the market.
On October 2008, the Continental Automated Buildings Association and HomeGrid Forum signed a liaison agreement to support HomeGrid Forum's efforts in conjunction with ITU-T G.hn to make it easy for consumers to connect devices and enjoy innovative applications using existing home wiring.
On July 2009, HomeGrid Forum and DLNA signed a liaison agreement "setting the stage for collaboration between the two organizations and the approval of G.hn as a DLNA-recognized Physical Layer technology".
On June 2010, Broadband Forum and HomeGrid Forum signed an agreement to deliver a compliance and interoperability testing program for products using G.hn technology. The Broadband Forum will support HomeGrid Forum's validation of G.hn products, their promotion of product conformance and interoperability, and help expedite the total time to market for HomeGrid Forum Certified products. On May 2011, both organizations jointly announced the first open G.hn plugfest.

Related standards

is a Recommendation developed by ITU-T that describes the generic architecture for home networks and their interfaces to the operators' broadband access networks.
ITU G.9972 is a Recommendation developed by ITU-T that specifies a coexistence mechanism for home networking transceivers capable of operating over power line wiring. The coexistence mechanism would allow G.hn devices which implement G.9972 to coexist with other devices implementing G.9972 and operating on the same power line wiring.
ITU G.9991 is a Recommendation developed by ITU-T that specifies the PHY and DLL for High speed indoor visible light communication transceivers, used in applications such as Li-Fi. G.vlc reuses the PHY and DLL of G.hn, enabling the same chips to be used for both applications.

Applications

The major motivation for wired home networking technologies was IPTV, especially when offered by a service provider as part of a triple play service, voice and data service offering such as AT&T's U-Verse. Smart Grid applications like home automation or demand side management can also be targeted by G.hn-compliant devices that implement low-complexity profiles.

IPTV

In many customers' homes the residential gateway that provides Internet access is not located close to the IPTV set-top box. This scenario becomes very common as service providers start to offer service packages with multiple set-top boxes per subscriber.
G.hn can connect the residential gateway to one or more set-top boxes, by using the existing home wiring. Using G.hn, IPTV service providers do not need to install new Ethernet wires, or 802.11 wireless networks. Because G.hn supports any kind of home wiring, end users might install the IPTV home network by themselves, thus reducing the cost to the service provider.

Home networks

Although Wi-Fi technology is popular for consumer home networks, G.hn is also intended for use in this application. G.hn is an adequate solution for consumers in situations in which using wireless is not needed, or is not desired or is not feasible.

Consumer electronics

products can support Internet connectivity using technologies such as Wi-Fi, Bluetooth or Ethernet. Many products not traditionally associated with computer use provide options to connect to the Internet or to a computer using a home network to provide access to digital content.
G.hn is intended to provide high-speed connectivity to CE products capable of displaying high definition television.
Integrating the power connection and the data connection provides potential energy savings in CE devices. Given that CE devices very often run on standby or "vampire power", they represent major savings to homeowners if their power connection is also their data connection - the device could reliably be turned off when it is not displaying any source.

Smart grid

Because G.hn can operate over wires including AC and DC power lines, it can provide the communication infrastructure required for smart grid applications. A comprehensive smart grid system requires reaching into every AC outlet in a home or building so that all devices can participate in energy conserving strategies.
On September 2009, the US National Institute of Standards and Technology included G.hn as one of its standards for the smart grid "for which it believed there
was strong stakeholder consensus", as part of an early draft of the "NIST Framework and Roadmap for Smart Grid Interoperability Standards". In January 2010 G.hn was removed from the final version of the "Standards Identified for Implementation".
The broad concept of a smart grid includes applications with overlapping scopes such as demand side management, energy conservation measures, Advanced Metering Infrastructure and home networks.
Because G.hn supports popular protocols like IPv4 and IPv6, G.hn-based networks can easily be integrated with IP-based networks. Well-known network management protocols like the Simple Network Management Protocol can manage IP networks including G.hn devices.