Francisco Juan Martínez Mojica, usually known as Francisco JM Mojica, is a Spanish microbiologist at the University of Alicante in Spain, known for his research on the CRISPR gene editing technique. In 1993 repeats were observed in the archaeal organisms Haloferax and Haloarcula species, and their function was studied by Francisco Mojica. Although his hypothesis turned out to be wrong, Mojica surmised at the time that the clustered repeats had a role in correctly segregating replicated DNA into daughter cells during cell division because plasmids and chromosomes with identical repeat arrays could not coexist in Haloferax volcanii. Transcription of the interrupted repeats was also noted for the first time. By 2000, Mojica's group had identified interrupted repeats in 20 species of microbes. In 2001, Mojica and Ruud Jansen, who was searching for additional interrupted repeats, proposed the acronym CRISPR to alleviate the confusion stemming from the numerous acronyms used to describe the sequences in the scientific literature. In 2005 he published the first paper suggesting that CRISPR was an innate immune system from bacteria. This publication got rejected from 4 major Scientific journals. Mojica was a winner of the 2017 Albany Medical Center Prize.
Publications
F.J.M. Mojica, R.A. Garrett. Discovery and Seminal Developments in the CRISPR field. In: CRISPR-Cas Systems: RNA-mediated adaptive immunity in Bacteria and Archaea. Barrangou, R. and van der Oost, J. Springer-Verlag Berlin Heidelberg. Cap1. pp 1–31. ; DOI: 10.1007/978-3-642-34657-6_1.
Mojica, F.J.M., Juez, G., and Rodrı́guez-Valera, F.. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 9, 613–621
Mojica, F.J.M., Ferrer, C., Juez, G., and Rodrı́guez-Valera, F.. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17, 85–93.
Mojica, F.J.M., Dı́ez-Villaseñor, C., Soria, E., and Juez, G.. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36, 244–246.
Mojica, F.J.M., Dı́ez-Villaseñor, C., Garcı́a-Martı́nez, J., and Soria, E.. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182.
Mojica, F.J.M., and Garrett, R.A.. Discovery and Seminal Developments in the CRISPR Field. In CRISPR-Cas Systems, R. Barrangou and J. van der Oost, eds., pp. 1–31.
Makarova K.S., Wolf Y.I., Alkhnbashi O., Costa F., Shah S., Saunders S.J., Barrangou R., Brouns S.J.J., Charpentier E., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Terns R.M., Terns M.A., White M.F., Yakunin A.F., Garrett R.A., van der Oost J., Backofen R., Koonin E.V.. An updated evolutionary classification scheme for CRISPR-Cas systems. Nature Rev Microbiology, 13: 722-736.
García-Gutiérrez E., Almendros C., Mojica F.J.M., Guzmán N.M., García-Martínez J.. CRISPR content correlates with the pathogenic potential of Escherichia coli. PLoS ONE, 10: e0131935.
Almendros C., Mojica F.J.M.. Exploring CRISPR-mediated interference by transformation with plasmid mixtures: identification of target interference motifs in Escherichia coli. Methods in Molecular Biology, 1311: 161-70.
Almendros C., Guzmán N.M., Díez-Villaseñor C., García-Martínez J. and Mojica F.J.M.. Target Motifs Affecting Natural Immunity by a Constitutive CRISPR-Cas System in Escherichia coli. PLoS ONE, 7: e50797.
García-Heredia I., Martín-Cuadrado A.-B., Mojica F.J.M., Santos F., Mira A., Antón J. and Rodríguez-Valera F.. Reconstructing Viral Genomes from the Environment Using Fosmid Clones: The Case of Haloviruses. PLoS ONE 7: e33802.
Kira S. Makarova, Daniel H. Haft, Rodolphe Barrangou, Stan Brouns, Emmanuelle Charpentier, Philippe Horvath, Sylvain Moineau, Francisco J. M. Mojica, Yuri I. Wolf, Alexander F. Yakunin, John van der Oost, and Eugene V. Koonin. Evolution and classification of the CRISPR-Cas systems. Nature Rev Microbiology, 9: 467-477.
F.J.M. Mojica and C. Díez-Villaseñor. The on-off switch of CRISPR immunity against phages in E. coli. Molecular Microbiology, 77:1341-1345.
S. Miquel, E. Peyretaillade, L. Claret, A. De Vallee, C. Dossat, B. Vacherie, E. Hajji Zineb, B. Segurens, V. Barbe, P. Sauvanet, C. Neut, J. Colombel, C. Medigue, F.J.M. Mojica, P. Peyret, R. Bonnet and A. Darfeuille-Michaud. Complete genome sequence of Crohn's disease-associated adherent-invasive E. coli strain LF82. PLoS ONE, 5: e12714.
C. Díez-Villaseñor, C. Almendros, J. García-Martínez, and F.J.M. Mojica. Diversity of CRISPR loci in Escherichia coli. Microbiology, 156: 1351-1361.
F. J. M. Mojica, C. Díez-Villaseñor, J. García-Martínez, C. Almendros. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155:733-740.