Failure mode and effects analysis


Failure mode and effects analysis is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effects. For each component, the failure modes and their resulting effects on the rest of the system are recorded in a specific FMEA worksheet. There are numerous variations of such worksheets. An FMEA can be a qualitative analysis, but may be put on a quantitative basis when mathematical failure rate models are combined with a statistical failure mode ratio database. It was one of the first highly structured, systematic techniques for failure analysis. It was developed by reliability engineers in the late 1950s to study problems that might arise from malfunctions of military systems. An FMEA is often the first step of a system reliability study.
A few different types of FMEA analyses exist, such as:
Sometimes FMEA is extended to FMECA to indicate that criticality analysis is performed too.
FMEA is an inductive reasoning single point of failure analysis and is a core task in reliability engineering, safety engineering and quality engineering.
A successful FMEA activity helps identify potential failure modes based on experience with similar products and processes—or based on common physics of failure logic. It is widely used in development and manufacturing industries in various phases of the product life cycle. Effects analysis refers to studying the consequences of those failures on different system levels.
Functional analyses are needed as an input to determine correct failure modes, at all system levels, both for functional FMEA or Piece-Part FMEA. An FMEA is used to structure Mitigation for Risk reduction based on either failure effect severity reduction or based on lowering the probability of failure or both. The FMEA is in principle a full inductive analysis, however the failure probability can only be estimated or reduced by understanding the failure mechanism. Hence, FMEA may include information on causes of failure to reduce the possibility of occurrence by eliminating identified causes.

Introduction

The FMEA is a design tool used to systematically analyze postulated component failures and identify the resultant effects on system operations. The analysis is sometimes characterized as consisting of two sub-analyses, the first being the failure modes and effects analysis, and the second, the criticality analysis. Successful development of an FMEA requires that the analyst include all significant failure modes for each contributing element or part in the system. FMEAs can be performed at the system, subsystem, assembly, subassembly or part level. The FMECA should be a living document during development of a hardware design. It should be scheduled and completed concurrently with the design. If completed in a timely manner, the FMECA can help guide design decisions. The usefulness of the FMECA as a design tool and in the decision-making process is dependent on the effectiveness and timeliness with which design problems are identified. Timeliness is probably the most important consideration. In the extreme case, the FMECA would be of little value to the design decision process if the analysis is performed after the hardware is built. While the FMECA identifies all part failure modes, its primary benefit is the early identification of all critical and catastrophic subsystem or system failure modes so they can be eliminated or minimized through design modification at the earliest point in the development effort; therefore, the FMECA should be performed at the system level as soon as preliminary design information is available and extended to the lower levels as the detail design progresses.
Remark: For more complete scenario modelling another type of Reliability analysis may be considered, for example fault tree analysis ; a deductive failure analysis that may handle multiple failures within the item and/or external to the item including maintenance and logistics. It starts at higher functional / system level. An FTA may use the basic failure mode FMEA records or an effect summary as one of its inputs. Interface hazard analysis, human error analysis and others may be added for completion in scenario modelling.

Functional Failure mode and effects analysis

The analysis should always be started by listing the functions that the design needs to fulfill. Functions are the starting point of a well done FMEA, and using functions as baseline provides the best yield of an FMEA. After all, a design is only one possible solution to perform functions that need to be fulfilled. This way an FMEA can be done on concept designs as well as detail designs, on hardware as well as software, and no matter how complex the design.
When performing an FMECA, interfacing hardware is first considered to be operating within specification. After that it can be extended by consequently using one of the 5 possible failure modes of one function of the interfacing hardware as a cause of failure for the design element under review. This gives the opportunity to make the design robust for function failure elsewhere in the system.
In addition, each part failure postulated is considered to be the only failure in the system. In addition to the FMEAs done on systems to evaluate the impact lower level failures have on system operation, several other FMEAs are done. Special attention is paid to interfaces between systems and in fact at all functional interfaces. The purpose of these FMEAs is to assure that irreversible physical and/or functional damage is not propagated across the interface as a result of failures in one of the interfacing units. These analyses are done to the piece part level for the circuits that directly interface with the other units. The FMEA can be accomplished without a CA, but a CA requires that the FMEA has previously identified system level critical failures. When both steps are done, the total process is called an FMECA.

Ground rules

The ground rules of each FMEA include a set of project selected procedures; the assumptions on which the analysis is based; the hardware that has been included and excluded from the analysis and the rationale for the exclusions. The ground rules also describe the indenture level of the analysis, the basic hardware status, and the criteria for system and mission success. Every effort should be made to define all ground rules before the FMEA begins; however, the ground rules may be expanded and clarified as the analysis proceeds. A typical set of ground rules follows:
  1. Only one failure mode exists at a time.
  2. All inputs to the item being analyzed are present and at nominal values.
  3. All consumables are present in sufficient quantities.
  4. Nominal power is available

    Benefits

Major benefits derived from a properly implemented FMECA effort are as follows:
  1. It provides a documented method for selecting a design with a high probability of successful operation and safety.
  2. A documented uniform method of assessing potential failure mechanisms, failure modes and their impact on system operation, resulting in a list of failure modes ranked according to the seriousness of their system impact and likelihood of occurrence.
  3. Early identification of single failure points and system interface problems, which may be critical to mission success and/or safety. They also provide a method of verifying that switching between redundant elements is not jeopardized by postulated single failures.
  4. An effective method for evaluating the effect of proposed changes to the design and/or operational procedures on mission success and safety.
  5. A basis for in-flight troubleshooting procedures and for locating performance monitoring and fault-detection devices.
  6. Criteria for early planning of tests.
From the above list, early identifications of SFPS, input to the troubleshooting procedure and locating of performance monitoring / fault detection devices are probably the most important benefits of the FMECA. In addition, the FMECA procedures are straightforward and allow orderly evaluation of the design.

History

Procedures for conducting FMECA were described in US Armed Forces Military Procedures document MIL-P-1629
; revised in 1980 as MIL-STD-1629A. By the early 1960s, contractors for the U.S. National Aeronautics and Space Administration were using variations of FMECA or FMEA under a variety of names. NASA programs using FMEA variants included Apollo, Viking, Voyager, Magellan, Galileo, and Skylab. The civil aviation industry was an early adopter of FMEA, with the Society for Automotive Engineers publishing ARP926 in 1967. After two revisions, Aerospace Recommended Practice ARP926 has been replaced by ARP4761, which is now broadly used in civil aviation.
During the 1970s, use of FMEA and related techniques spread to other industries. In 1971 NASA prepared a report for the U.S. Geological Survey recommending the use of FMEA in assessment of offshore petroleum exploration. A 1973 U.S. Environmental Protection Agency report described the application of FMEA to wastewater treatment plants. FMEA as application for HACCP on the Apollo Space Program moved into the food industry in general.
The automotive industry began to use FMEA by the mid 1970s. The Ford Motor Company introduced FMEA to the automotive industry for safety and regulatory consideration after the Pinto affair. Ford applied the same approach to processes to consider potential process induced failures prior to launching production. In 1993 the Automotive Industry Action Group first published an FMEA standard for the automotive industry. It is now in its fourth edition. The SAE first published related standard J1739 in 1994. This standard is also now in its fourth edition.
Although initially developed by the military, FMEA methodology is now extensively used in a variety of industries including semiconductor processing, food service, plastics, software, and healthcare. Toyota has taken this one step further with its Design Review Based on Failure Mode approach. The method is now supported by the American Society for Quality which provides detailed guides on applying the method. The standard Failure Modes and Effects Analysis and Failure Modes, Effects and Criticality Analysis
procedures identify the product failure mechanisms, but may not model them without specialized software. This limits their applicability to provide a meaningful input to critical procedures such as virtual qualification, root cause analysis, accelerated test programs, and to remaining life assessment. To overcome the shortcomings of FMEA and FMECA a Failure Modes, Mechanisms and Effect Analysis has often been used.

Basic terms

The following covers some basic FMEA terminology.
;Failure
;Failure mode
;Failure cause and/or mechanism
;Failure effect
;Indenture levels
;Local effect
;Next higher level effect
;End effect
;Detection
;Probability
; Risk Priority Number
;Severity
;Remarks / mitigation / actions

Example of FMEA worksheet

Probability (P)

It is necessary to look at the cause of a failure mode and the likelihood of occurrence. This can be done by analysis, calculations / FEM, looking at similar items or processes and the failure modes that have been documented for them in the past. A failure cause is looked upon as a design weakness. All the potential causes for a failure mode should be identified and documented. This should be in technical terms. Examples of causes are: Human errors in handling, Manufacturing induced faults, Fatigue, Creep, Abrasive wear, erroneous algorithms, excessive voltage or improper operating conditions or use.
A failure mode may given a Probability Ranking with a defined number of levels.
RatingMeaning
AExtremely Unlikely
BRemote
COccasional
DReasonably Possible
EFrequent

For a piece part FMEA, quantitative probability may be calculated from the results of a reliability prediction analysis and the failure mode ratios from a failure mode distribution catalog, such as RAC FMD-97. This method allows a quantitative FTA to use the FMEA results to verify that undesired events meet acceptable levels of risk.

Severity (S)

Determine the Severity for the worst-case scenario adverse end effect. It is convenient to write these effects down in terms of what the user might see or experience in terms of functional failures. Examples of these end effects are: full loss of function x, degraded performance, functions in reversed mode, too late functioning, erratic functioning, etc. Each end effect is given a Severity number from, say, I to V, based on cost and/or loss of life or quality of life. These numbers prioritize the failure modes. Below a typical classification is given. Other classifications are possible. See also hazard analysis.
RatingMeaning
INo relevant effect on reliability or safety
IIVery minor, no damage, no injuries, only results in a maintenance action
IIIMinor, low damage, light injuries
IVCritical
VCatastrophic

Detection (D)

The means or method by which a failure is detected, isolated by operator and/or maintainer and the time it may take. This is important for maintainability control and it is especially important for multiple failure scenarios. This may involve dormant failure modes or latent failures. It should be made clear how the failure mode or cause can be discovered by an operator under normal system operation or if it can be discovered by the maintenance crew by some diagnostic action or automatic built in system test. A dormancy and/or latency period may be entered.
RatingMeaning
1Certain – fault will be caught on test – e.g. Poka-Yoke
2Almost certain
3High
4Moderate
5Low
6Fault is undetected by Operators or Maintainers

Dormancy or Latency Period

The average time that a failure mode may be undetected may be entered if known. For example:
If the undetected failure allows the system to remain in a safe / working state, a second failure situation should be explored to determine whether or not an indication will be evident to all operators and what corrective action they may or should take.
Indications to the operator should be described as follows:
PERFORM DETECTION COVERAGE ANALYSIS FOR TEST PROCESSES AND MONITORING :
This type of analysis is useful to determine how effective various test processes are at the detection of latent and dormant faults. The method used to accomplish this involves an examination of the applicable failure modes to determine whether or not their effects are detected, and to determine the percentage of failure rate applicable to the failure modes which are detected. The possibility that the detection means may itself fail latently should be accounted for in the coverage analysis as a limiting factor. Inclusion of the detection coverage in the FMEA can lead to each individual failure that would have been one effect category now being a separate effect category due to the detection coverage possibilities. Another way to include detection coverage is for the FTA to conservatively assume that no holes in coverage due to latent failure in the detection method affect detection of all failures assigned to the failure effect category of concern. The FMEA can be revised if
necessary for those cases where this conservative assumption does not allow the top event probability requirements to be met.
After these three basic steps the Risk level may be provided.

Risk level (P×S) and (D)

Risk is the combination of End Effect Probability And Severity where probability and severity includes the effect on non-detectability. This may influence the end effect probability of failure or the worst case effect Severity. The exact calculation may not be easy in all cases, such as those where multiple scenarios are possible and detectability / dormancy plays a crucial role. In that case Fault Tree Analysis and/or Event Trees may be needed to determine exact probability and risk levels.
Preliminary Risk levels can be selected based on a Risk Matrix like shown below, based on Mil. Std. 882. The higher the Risk level, the more justification and mitigation is needed to provide evidence and lower the risk to an acceptable level. High risk should be indicated to higher level management, who are responsible for final decision-making.
IIIIIIIVVVI
ALowLowLowLowModerateHigh
BLowLowLowModerateHighUnacceptable
CLowLowModerateModerateHighUnacceptable
DLowModerateModerateHighUnacceptableUnacceptable
EModerateModerateHighUnacceptableUnacceptableUnacceptable

The FMEA should be updated whenever:
While FMEA identifies important hazards in a system, its results may not be comprehensive and the approach has limitations. In the healthcare context, FMEA and other risk assessment methods, including SWIFT and retrospective approaches, have been found to have limited validity when used in isolation. Challenges around scoping and organisational boundaries appear to be a major factor in this lack of validity.
If used as a top-down tool, FMEA may only identify major failure modes in a system. Fault tree analysis is better suited for "top-down" analysis. When used as a "bottom-up" tool FMEA can augment or complement FTA and identify many more causes and failure modes resulting in top-level symptoms. It is not able to discover complex failure modes involving multiple failures within a subsystem, or to report expected failure intervals of particular failure modes up to the upper level subsystem or system.
Additionally, the multiplication of the severity, occurrence and detection rankings may result in rank reversals, where a less serious failure mode receives a higher RPN than a more serious failure mode. The reason for this is that the rankings are ordinal scale numbers, and multiplication is not defined for ordinal numbers. The ordinal rankings only say that one ranking is better or worse than another, but not by how much. For instance, a ranking of "2" may not be twice as severe as a ranking of "1", or an "8" may not be twice as severe as a "4", but multiplication treats them as though they are. See Level of measurement for further discussion. Various solutions to this problems have been proposed, e.g., the use of fuzzy logic as an alternative to classic RPN model.
The FMEA worksheet is hard to produce, hard to understand and read, as well as hard to maintain. The use of neural network techniques to cluster and visualise failure modes were suggested starting from the 2010. An alternative approach is to combine the traditional FMEA table with set of bow-tie diagrams. The diagrams provide a visualisation of the chains of cause and effect, while the FMEA table provides the detailed information about specific events.

Types