Equivalence of categories


In category theory, an abstract branch of mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.
If a category is equivalent to the opposite of another category then one speaks of
a duality of categories, and says that the two categories are dually equivalent.
An equivalence of categories consists of a functor between the involved categories, which is required to have an "inverse" functor. However, in contrast to the situation common for isomorphisms in an algebraic setting, the composite of the functor and its "inverse" is not necessarily the identity mapping. Instead it is sufficient that each object be naturally isomorphic to its image under this composition. Thus one may describe the functors as being "inverse up to isomorphism". There is indeed a concept of isomorphism of categories where a strict form of inverse functor is required, but this is of much less practical use than the equivalence concept.

Definition

Formally, given two categories C and D, an equivalence of categories consists of a functor F : CD, a functor G : DC, and two natural isomorphisms ε: FGID and η : ICGF. Here FG: DD and GF: CC, denote the respective compositions of F and G, and IC: CC and ID: DD denote the identity functors on C and D, assigning each object and morphism to itself. If F and G are contravariant functors one speaks of a duality of categories instead.
One often does not specify all the above data. For instance, we say that the categories C and D are equivalent if there exists an equivalence between them. Furthermore, we say that F "is" an equivalence of categories if an inverse functor G and natural isomorphisms as above exist. Note however that knowledge of F is usually not enough to reconstruct G and the natural isomorphisms: there may be many choices.

Equivalent characterizations

A functor F : CD yields an equivalence of categories if and only if it is simultaneously:
This is a quite useful and commonly applied criterion, because one does not have to explicitly construct the "inverse" G and the natural isomorphisms between FG, GF and the identity functors. On the other hand, though the above properties guarantee the existence of a categorical equivalence, the missing data is not completely specified, and often there are many choices. It is a good idea to specify the missing constructions explicitly whenever possible.
Due to this circumstance, a functor with these properties is sometimes called a weak equivalence of categories.
There is also a close relation to the concept of adjoint functors. The following statements are equivalent for functors F : CD and G : DC:
One may therefore view an adjointness relation between two functors as a "very weak form of equivalence". Assuming that the natural transformations for the adjunctions are given, all of these formulations allow for an explicit construction of the necessary data, and no choice principles are needed. The key property that one has to prove here is that the counit of an adjunction is an isomorphism if and only if the right adjoint is a full and faithful functor.

Examples

As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If F : CD is an equivalence, then the following statements are all true:
Dualities "turn all concepts around": they turn initial objects into terminal objects, monomorphisms into epimorphisms, kernels into cokernels, limits into colimits etc.
If F : CD is an equivalence of categories, and G1 and G2 are two inverses of F, then G1 and G2 are naturally isomorphic.
If F : CD is an equivalence of categories, and if C is a preadditive category, then D may be turned into a preadditive category in such a way that F becomes an additive functor. On the other hand, any equivalence between additive categories is necessarily additive.
An auto-equivalence of a category C is an equivalence F : CC. The auto-equivalences of C form a group under composition if we consider two auto-equivalences that are naturally isomorphic to be identical. This group captures the essential "symmetries" of C.