Equifinality


Equifinality is the principle that in open systems a given end state can be reached by many potential means. Also meaning that a goal can be reached by many ways. The term and concept is due to Hans Driesch, the developmental biologist, later applied by Ludwig von Bertalanffy, the founder of general systems theory, and by William T. Powers, the founder of perceptual control theory. Driesch and von Bertalanffy prefer this term, in contrast to "goal", in describing complex systems' similar or behavior. Powers simply emphasised the flexibility of response, since it emphasizes that the same end state may be achieved via many different paths or trajectories.
In closed systems, a direct cause-and-effect relationship exists between the initial condition and the final state of the system: When a computer's 'on' switch is pushed, the system powers up. Open systems, however, operate quite differently. The idea of equifinality suggests that similar results may be achieved with different initial conditions and in many different ways. This phenomenon has also been referred to as isotelesis when in games involving superrationality.

Overview

In business, equifinality implies that firms may establish similar competitive advantages based on substantially different competencies.
In psychology, equifinality refers to how different early experiences in life can lead to similar outcomes. In other words, there are many different early experiences that can lead to the same psychological disorder.
In archaeology, equifinality refers to how different historical processes may lead to a similar outcome or social formation. For example, the development of agriculture or the bow and arrow occurred independently in many different areas of the world, yet for different reasons and through different historical trajectories. This highlights that generalizations based on cross-cultural comparisons cannot be made uncritically.
In geomorphology, the term equifinality indicates that similar landforms might arise as a result of quite different sets of processes.
In environmental modeling studies, and especially in hydrological modeling, two models are equifinal if they lead to an equally acceptable or behavioral representation of the observed natural processes. It is a key concept to assess how uncertain hydrological predictions are.

Publications