Einstein's thought experiments
A hallmark of Albert Einstein's career was his use of visualized thought experiments as a fundamental tool for understanding physical issues and for elucidating his concepts to others. Einstein's thought experiments took diverse forms. In his youth, he mentally chased beams of light. For special relativity, he employed moving trains and flashes of lightning to explain his most penetrating insights. For general relativity, he considered a person falling off a roof, accelerating elevators, blind beetles crawling on curved surfaces and the like. In his debates with Niels Bohr on the nature of reality, he proposed imaginary devices intended to show, at least in concept, how the Heisenberg uncertainty principle might be evaded. In a profound contribution to the literature on quantum mechanics, Einstein considered two particles briefly interacting and then flying apart so that their states are correlated, anticipating the phenomenon known as quantum entanglement.
Introduction
A thought experiment is a logical argument or mental model cast within the context of an imaginary scenario. A scientific thought experiment, in particular, may examine the implications of a theory, law, or set of principles with the aid of fictive and/or natural particulars in an idealized environment. They describe experiments that, except for some specific and necessary idealizations, could conceivably be performed in the real world.As opposed to physical experiments, thought experiments do not report new empirical data. They can only provide conclusions based on deductive or inductive reasoning from their starting assumptions. Thought experiments invoke particulars that are irrelevant to the generality of their conclusions. It is the invocation of these particulars that give thought experiments their experiment-like appearance. A thought experiment can always be reconstructed as a straightforward argument, without the irrelevant particulars. John D. Norton, a well-known philosopher of science, has noted that "a good thought experiment is a good argument; a bad thought experiment is a bad argument."
When effectively used, the irrelevant particulars that convert a straightforward argument into a thought experiment can act as "intuition pumps" that stimulate readers' ability to apply their intuitions to their understanding of a scenario. Thought experiments have a long history. Perhaps the best known in the history of modern science is Galileo's demonstration that falling objects must fall at the same rate regardless of their masses. This has sometimes been taken to be an actual physical demonstration, involving his climbing up the Leaning Tower of Pisa and dropping two heavy weights off it. In fact, it was a logical demonstration described by Galileo in Discorsi e dimostrazioni matematiche.
Einstein had a highly visual understanding of physics. His work in the patent office "stimulated to see the physical ramifications of theoretical concepts." These aspects of his thinking style inspired him to fill his papers with vivid practical detail making them quite different from, say, the papers of Lorentz or Maxwell. This included his use of thought experiments.
Special relativity
Pursuing a beam of light
Late in life, Einstein recalledEinstein's recollections of his youthful musings are widely cited because of the hints they provide of his later great discovery. However, Norton has noted that Einstein's reminiscences were probably colored by a half-century of hindsight. Norton lists several problems with Einstein's recounting, both historical and scientific:
Rather than the thought experiment being at all incompatible with aether theories, the youthful Einstein appears to have reacted to the scenario out of an intuitive sense of wrongness. He felt that the laws of optics should obey the principle of relativity. As he grew older, his early thought experiment acquired deeper levels of significance: Einstein felt that Maxwell's equations should be the same for all observers in inertial motion. From Maxwell's equations, one can deduce a single speed of light, and there is nothing in this computation that depends on an observer's speed. Einstein sensed a conflict between Newtonian mechanics and the constant speed of light determined by Maxwell's equations.
Regardless of the historical and scientific issues described above, Einstein's early thought experiment was part of the repertoire of test cases that he used to check on the viability of physical theories. Norton suggests that the real importance of the thought experiment was that it provided a powerful objection to emission theories of light, which Einstein had worked on for several years prior to 1905.
Magnet and conductor
In the very first paragraph of Einstein's seminal 1905 work introducing special relativity, he writes:This opening paragraph recounts well-known experimental results obtained by Michael Faraday in 1831. The experiments describe what appeared to be two different phenomena: the motional EMF generated when a wire moves through a magnetic field, and the transformer EMF generated by a changing magnetic field. James Clerk Maxwell himself drew attention to this fact in his 1861 paper On Physical Lines of Force. In the latter half of Part II of that paper, Maxwell gave a separate physical explanation for each of the two phenomena.
Although Einstein calls the asymmetry "well-known", there is no evidence that any of Einstein's contemporaries considered the distinction between motional EMF and transformer EMF to be in any way odd or pointing to a lack of understanding of the underlying physics. Maxwell, for instance, had repeatedly discussed Faraday's laws of induction, stressing that the magnitude and direction of the induced current was a function only of the relative motion of the magnet and the conductor, without being bothered by the clear distinction between conductor-in-motion and magnet-in-motion in the underlying theoretical treatment.
Yet Einstein's reflection on this experiment represented the decisive moment in his long and tortuous path to special relativity. Although the equations describing the two scenarios are entirely different, there is no measurement that can distinguish whether the magnet is moving, the conductor is moving, or both.
In a 1920 review on the Fundamental Ideas and Methods of the Theory of Relativity, Einstein related how disturbing he found this asymmetry:
Einstein needed to extend the relativity of motion that he perceived between magnet and conductor in the above thought experiment to a full theory. For years, however, he did not know how this might be done. The exact path that Einstein took to resolve this issue is unknown. We do know, however, that Einstein spent several years pursuing an emission theory of light, encountering difficulties that eventually led him to give up the attempt.
That decision ultimately led to his development of special relativity as a theory founded on two postulates of which he could be sure. Expressed in contemporary physics vocabulary, his postulates were as follows:
Einstein's wording of the second postulate was one with which nearly all theorists of his day could agree. His wording is a far more intuitive form of the second postulate than the stronger version frequently encountered in popular writings and college textbooks.
Trains, embankments, and lightning flashes
The topic of how Einstein arrived at special relativity has been a fascinating one to many scholars: A lowly, twenty-six year old patent officer, largely self-taught in physics and completely divorced from mainstream research, nevertheless in the year 1905 produced four extraordinary works, only one of which appeared related to anything that he had ever published before.Einstein's paper, On the Electrodynamics of Moving Bodies, is a polished work that bears few traces of its gestation. Documentary evidence concerning the development of the ideas that went into it consist of, quite literally, only two sentences in a handful of preserved early letters, and various later historical remarks by Einstein himself, some of them known only second-hand and at times contradictory.
In regards to the relativity of simultaneity, Einstein's 1905 paper develops the concept vividly by carefully considering the basics of how time may be disseminated through the exchange of signals between clocks. In his popular work, Relativity: The Special and General Theory, Einstein translates the formal presentation of his paper into a thought experiment using a train, a railway embankment, and lightning flashes. The essence of the thought experiment is as follows:
- Observer M stands on an embankment, while observer M rides on a rapidly traveling train. At the precise moment that M and M coincide in their positions, lightning strikes points A and B equidistant from M and M.
- Light from these two flashes reach M at the same time, from which M concludes that the bolts were synchronous.
- The combination of Einstein's first and second postulates implies that, despite the rapid motion of the train relative to the embankment, M measures exactly the same speed of light as does M. Since M was equidistant from A and B when lightning struck, the fact that M receives light from B before light from A means that to M, the bolts were not synchronous. Instead, the bolt at B struck first.
However, all of the above is supposition. In later recollections, when Einstein was asked about what inspired him to develop special relativity, he would mention his riding a light beam and his magnet and conductor thought experiments. He would also mention the importance of the Fizeau experiment and the observation of stellar aberration. "They were enough", he said. He never mentioned thought experiments about clocks and their synchronization.
The routine analyses of the Fizeau experiment and of stellar aberration, that treat light as Newtonian corpuscles, do not require relativity. But problems arise if one considers light as waves traveling through an aether, which are resolved by applying the relativity of simultaneity. It is entirely possible, therefore, that Einstein arrived at special relativity through a different path than that commonly assumed, through Einstein's examination of Fizeau's experiment and stellar aberration.
We therefore do not know just how important clock synchronization and the train and embankment thought experiment were to Einstein's development of the concept of the relativity of simultaneity. We do know, however, that the train and embankment thought experiment was the preferred means whereby he chose to teach this concept to the general public.
General relativity
Falling painters and accelerating elevators
In his unpublished 1920 review, Einstein related the genesis of his thoughts on the equivalence principle:The realization "startled" Einstein, and inspired him to begin an eight-year quest that led to what is considered to be his greatest work, the theory of general relativity. Over the years, the story of the falling man has become an iconic one, much embellished by other writers. In most retellings of Einstein's story, the falling man is identified as a painter. In some accounts, Einstein was inspired after he witnessed a painter falling from the roof of a building adjacent to the patent office where he worked. This version of the story leaves unanswered the question of why Einstein might consider his observation of such an unfortunate accident to represent the happiest thought in his life.
Einstein later refined his thought experiment to consider a man inside a large enclosed chest or elevator falling freely in space. While in free fall, the man would consider himself weightless, and any loose objects that he emptied from his pockets would float alongside him. Then Einstein imagined a rope attached to the roof of the chamber. A powerful "being" of some sort begins pulling on the rope with constant force. The chamber begins to move "upwards" with a uniformly accelerated motion. Within the chamber, all of the man's perceptions are consistent with his being in a uniform gravitational field. Einstein asked, "Ought we to smile at the man and say that he errs in his conclusion?" Einstein answered no. Rather, the thought experiment provided "good grounds for extending the principle of relativity to include bodies of reference which are accelerated with respect to each other, and as a result we have gained a powerful argument for a generalised postulate of relativity."
Through this thought experiment, Einstein addressed an issue that was so well known, scientists rarely worried about it or considered it puzzling: Objects have "gravitational mass," which determines the force with which they are attracted to other objects. Objects also have "inertial mass," which determines the relationship between the force applied to an object and how much it accelerates. Newton had pointed out that, even though they are defined differently, gravitational mass and inertial mass always seem to be equal. But until Einstein, no one had conceived a good explanation as to why this should be so. From the correspondence revealed by his thought experiment, Einstein concluded that "it is impossible to discover by experiment whether a given system of coordinates is accelerated, or whether...the observed effects are due to a gravitational field." This correspondence between gravitational mass and inertial mass is the equivalence principle.
An extension to his accelerating observer thought experiment allowed Einstein to deduce that "rays of light are propagated curvilinearly in gravitational fields."
Quantum mechanics
Background: Einstein and the quantum
Many myths have grown up about Einstein's relationship with quantum mechanics. Freshman physics students are aware that Einstein explained the photoelectric effect and introduced the concept of the photon. But students who have grown up with the photon may not be aware of how revolutionary the concept was for his time. The best-known factoids about Einstein's relationship with quantum mechanics are his statement, "God does not play dice with the universe" and the indisputable fact that he just did not like the theory in its final form. This has led to the general impression that, despite his initial contributions, Einstein was out of touch with quantum research and played at best a secondary role in its development. Concerning Einstein's estrangement from the general direction of physics research after 1925, his well-known scientific biographer, Abraham Pais, wrote:In hindsight, we know that Pais was incorrect in his assessment.
Einstein was arguably the greatest single contributor to the "old" quantum theory.
- In his 1905 paper on light quanta, Einstein created the quantum theory of light. His proposal that light exists as tiny packets was so revolutionary, that even such major pioneers of quantum theory as Planck and Bohr refused to believe that it could be true. Bohr, in particular, was a passionate disbeliever in light quanta, and repeatedly argued against them until 1925, when he yielded in the face of overwhelming evidence for their existence.
- In his 1906 theory of specific heats, Einstein was the first to realize that quantized energy levels explained the specific heat of solids. In this manner, he found a rational justification for the third law of thermodynamics : at very cold temperatures, atoms in a solid do not have enough thermal energy to reach even the first excited quantum level, and so cannot vibrate.
- Einstein proposed the wave-particle duality of light. In 1909, using a rigorous fluctuation argument based on a thought experiment and drawing on his previous work on Brownian motion, he predicted the emergence of a "fusion theory" that would combine the two views. Basically, he demonstrated that the Brownian motion experienced by a mirror in thermal equilibrium with black body radiation would be the sum of two terms, one due to the wave properties of radiation, the other due to its particulate properties.
- Although Planck is justly hailed as the father of quantum mechanics, his derivation of the law of black-body radiation rested on fragile ground, since it required ad hoc assumptions of an unreasonable character. Furthermore, Planck's derivation represented an analysis of classical harmonic oscillators merged with quantum assumptions in an improvised fashion. In his 1916 theory of radiation, Einstein was the first to create a purely quantum explanation. This paper, well known for broaching the possibility of stimulated emission, changed the nature of the evolving quantum theory by introducing the fundamental role of random chance.
- In 1924, Einstein received a short manuscript by an unknown Indian professor, Satyendra Nath Bose, outlining a new method of deriving the law of blackbody radiation. Einstein was intrigued by Bose's peculiar method of counting the number of distinct ways of putting photons into the available states, a method of counting that Bose apparently did not realize was unusual. Einstein, however, understood that Bose's counting method implied that photons are, in a deep sense, indistinguishable. He translated the paper into German and had it published. Einstein then followed Bose's paper with an extension to Bose's work which predicted Bose-Einstein condensation, one of the fundamental research topics of condensed matter physics.
- While trying to develop a mathematical theory of light which would fully encompass its wavelike and particle-like aspects, Einstein developed the concept of "ghost fields". A guiding wave obeying Maxwell's classical laws would propagate following the normal laws of optics, but would not transmit any energy. This guiding wave, however, would govern the appearance of quanta of energy on a statistical basis, so that the appearance of these quanta would be proportional to the intensity of the interference radiation. These ideas became widely known in the physics community, and through Born's work in 1926, later became a key concept in the modern quantum theory of radiation and matter.
What of after 1925? In 1935, working with two younger colleagues, Einstein issued a final challenge to quantum mechanics, attempting to show that it could not represent a final solution. Despite the questions raised by this paper, it made little or no difference to how physicists employed quantum mechanics in their work. Of this paper, Pais was to write:
In contrast to Pais' negative assessment, this paper, outlining the EPR paradox, has become one of the most widely cited articles in the entire physics literature. It is considered the centerpiece of the development of quantum information theory, which has been termed the "third quantum revolution."
Wave-particle duality
All of Einstein's major contributions to the old quantum theory were arrived at via statistical argument. This includes his 1905 paper arguing that light has particle properties, his 1906 work on specific heats, his 1909 introduction of the concept of wave-particle duality, his 1916 work presenting an improved derivation of the blackbody radiation formula, and his 1924 work that introduced the concept of indistinguishability.Einstein's 1909 arguments for the wave-particle duality of light were based on a thought experiment. Einstein imagined a mirror in a cavity containing particles of an ideal gas and filled with black body radiation, with the entire system in thermal equilibrium. The mirror is constrained in its motions to a direction perpendicular to its surface.
The mirror jiggles from Brownian motion due to collisions with the gas molecules. Since the mirror is in a radiation field, the moving mirror transfers some of its kinetic energy to the radiation field as a result of the difference in the radiation pressure between its forwards and reverse surfaces. This implies that there must be fluctuations in the black body radiation field, and hence fluctuations in the black body radiation pressure. Reversing the argument shows that there must be a route for the return of energy from the fluctuating black body radiation field back to the gas molecules.
Given the known shape of the radiation field given by Planck's law, Einstein could calculate the mean square energy fluctuation of the black body radiation. He found the root mean square energy fluctuation in a small volume of a cavity filled with thermal radiation in the frequency interval between and to be a function of frequency and temperature:
where would be the average energy of the volume in contact with the thermal bath. The above expression has two terms, the second corresponding to the classical Rayleigh-Jeans law, and the first corresponding to the Wien distribution law (which from Einstein's 1905 analysis, would result from point-like quanta with energy. From this, Einstein concluded that radiation had simultaneous wave and particle aspects.
Bubble paradox
Einstein from 1905 to 1923 was virtually the only physicist who took light-quanta seriously. Throughout most of this period, the physics community treated the light-quanta hypothesis with "skepticism bordering on derision" and maintained this attitude even after Einstein's photoelectric law was validated. The citation for Einstein's 1922 Nobel Prize very deliberately avoided all mention of light-quanta, instead stating that it was being awarded for "his services to theoretical physics and especially for his discovery of the law of the photoelectric effect". This dismissive stance contrasts sharply with the enthusiastic manner in which Einstein's other major contributions were accepted, including his work on Brownian motion, special relativity, general relativity, and his numerous other contributions to the "old" quantum theory.Various explanations have been given for this neglect on the part of the physics community. First and foremost was wave theory's long and indisputable success in explaining purely optical phenomena. Second was the fact that his 1905 paper, which pointed out that certain phenomena would be more readily explained under the assumption that light is particulate, presented the hypothesis only as a "heuristic viewpoint". The paper offered no compelling, comprehensive alternative to existing electromagnetic theory. Third was the fact that his 1905 paper introducing light quanta and his two 1909 papers that argued for a wave-particle fusion theory approached their subjects via statistical arguments that his contemporaries "might accept as theoretical exercise—crazy, perhaps, but harmless".
Most of Einstein's contemporaries adopted the position that light is ultimately a wave, but appears particulate in certain circumstances only because atoms absorb wave energy in discrete units.
Among the thought experiments that Einstein presented in his 1909 lecture on the nature and constitution of radiation was one that he used to point out the implausibility of the above argument. He
used this thought experiment to argue that atoms emit light as discrete particles rather than as continuous waves: An electron in a cathode ray beam strikes an atom in a target. The intensity of the beam is set so low that we can consider one electron at a time as impinging on the target. The atom emits a spherically radiating electromagnetic wave. This wave excites an atom in a secondary target, causing it to release an electron of energy comparable to that of the original electron. The energy of the secondary electron depends only on the energy of the original electron and not at all on the distance between the primary and secondary targets. All the energy spread around the circumference of the radiating electromagnetic wave would appear to be instantaneously focused on the target atom, an action that Einstein considered implausible. Far more plausible would be to say that the first atom emitted a particle in the direction of the second atom.
Although Einstein originally presented this thought experiment as an argument for light having a particulate nature, it has been noted that this thought experiment, which has been termed the "bubble paradox", foreshadows the famous 1935 EPR paper. In his 1927 Solvay debate with Bohr, Einstein employed this thought experiment to illustrate that according to the Copenhagen interpretation of quantum mechanics that Bohr championed, the quantum wavefunction of a particle would abruptly collapse like a "popped bubble" no matter how widely dispersed the wavefunction. The transmission of energy from opposite sides of the bubble to a single point would occur faster than light, violating the principle of locality.
In the end, it was experiment, not any theoretical argument, that finally enabled the concept of the light quantum to prevail. In 1923, Arthur Compton was studying the scattering of high energy X-rays from a graphite target. Unexpectedly, he found that the scattered X-rays were shifted in wavelength, corresponding to inelastic scattering of the X-rays by the electrons in the target. His observations were totally inconsistent with wave behavior, but instead could only be explained if the X-rays acted as particles. This observation of the Compton effect rapidly brought about a change in attitude, and by 1926, the concept of the "photon" was generally accepted by the physics community.
Einstein's light box
Einstein did not like the direction in which quantum mechanics had turned after 1925. Although excited by Heisenberg's matrix mechanics, Schroedinger's wave mechanics, and Born's clarification of the meaning of the Schroedinger wave equation, his instincts told him that something was missing. In a letter to Born, he wrote:The Solvay Debates between Bohr and Einstein began in dining-room discussions at the Fifth Solvay International Conference on Electrons and Photons in 1927. Einstein's issue with the new quantum mechanics was not just that, with the probability interpretation, it rendered invalid the notion of rigorous causality. After all, as noted above, Einstein himself had introduced random processes in his 1916 theory of radiation. Rather, by defining and delimiting the maximum amount of information obtainable in a given experimental arrangement, the Heisenberg uncertainty principle denied the existence of any knowable reality in terms of a complete specification of the momenta and description of individual particles, an objective reality that would exist whether or not we could ever observe it.
Over dinner, during after-dinner discussions, and at breakfast, Einstein debated with Bohr and his followers on the question whether quantum mechanics in its present form could be called complete. Einstein illustrated his points with increasingly clever thought experiments intended to prove that position and momentum could in principle be simultaneously known to arbitrary precision. For example, one of his thought experiments involved sending a beam of electrons through a shuttered screen, recording the positions of the electrons as they struck a photographic screen. Bohr and his allies would always be able to counter Einstein's proposal, usually by the end of the same day.
On the final day of the conference, Einstein revealed that the uncertainty principle was not the only aspect of the new quantum mechanics that bothered him. Quantum mechanics, at least in the Copenhagen interpretation, appeared to allow action at a distance, the ability for two separated objects to communicate at speeds greater than light. By 1928, the consensus was that Einstein had lost the debate, and even his closest allies during the Fifth Solvay Conference, for example Louis de Broglie, conceded that quantum mechanics appeared to be complete.
At the Sixth Solvay International Conference on Magnetism, Einstein came armed with a new thought experiment. This involved a box with a shutter that operated so quickly, it would allow only one photon to escape at a time. The box would first be weighed exactly. Then, at a precise moment, the shutter would open, allowing a photon to escape. The box would then be re-weighed. The well-known relationship between mass and energy would allow the energy of the particle to be precisely determined. With this gadget, Einstein believed that he had demonstrated a means to obtain, simultaneously, a precise determination of the energy of the photon as well as its exact time of departure from the system.
Bohr was shaken by this thought experiment. Unable to think of a refutation, he went from one conference participant to another, trying to convince them that Einstein's thought experiment could not be true, that if it were true, it would literally mean the end of physics. After a sleepless night, he finally worked out a response which, ironically, depended on Einstein's general relativity. Consider the illustration of Einstein's light box:
After finding his last attempt at finding a loophole around the uncertainty principle refuted, Einstein quit trying to search for inconsistencies in quantum mechanics. Instead, he shifted his focus to the other aspects of quantum mechanics with which he was uncomfortable, focusing on his critique of action at a distance. His next paper on quantum mechanics foreshadowed his later paper on the EPR paradox.
Einstein was gracious in his defeat. The following September, Einstein nominated Heisenberg and Schroedinger for the Nobel Prize, stating, "I am convinced that this theory undoubtedly contains a part of the ultimate truth."
EPR Paradox
Einstein's fundamental dispute with quantum mechanics was not about whether God rolled dice, whether the uncertainty principle allowed simultaneous measurement of position and momentum, or even whether quantum mechanics was complete. It was about reality. Does a physical reality exist independent of our ability to observe it? To Bohr and his followers, such questions were meaningless. All that we can know are the results of measurements and observations. It makes no sense to speculate about an ultimate reality that exists beyond our perceptions.Einstein's beliefs had evolved over the years from those that he had held when he was young, when, as a logical positivist heavily influenced by his reading of David Hume and Ernst Mach, he had rejected such unobservable concepts as absolute time and space. Einstein believed:
Einstein considered that realism and localism were fundamental underpinnings of physics. After leaving Nazi Germany and settling in Princeton at the Institute for Advanced Studies, Einstein began writing up a thought experiment that he had been mulling over since attending a lecture by Léon Rosenfeld in 1933. Since the paper was to be in English, Einstein enlisted the help of the 46-year-old Boris Podolsky, a fellow who had moved to the Institute from Caltech; he also enlisted the help of the 26-year-old Nathan Rosen, also at the Institute, who did much of the math. The result of their collaboration was the four page EPR paper, which in its title asked the question Can Quantum-Mechanical Description of Physical Reality be Considered Complete?
After seeing the paper in print, Einstein found himself unhappy with the result. His clear conceptual visualization had been buried under layers of mathematical formalism.
Einstein's thought experiment involved two particles that have collided or which have been created in such a way that they have properties which are correlated. The total wave function for the pair links the positions of the particles as well as their linear momenta. The figure depicts the spreading of the wave function from the collision point. However, observation of the position of the first particle allows us to determine precisely the position of the second particle no matter how far the pair have separated. Likewise, measuring the momentum of the first particle allows us to determine precisely the momentum of the second particle. "In accordance with our criterion for reality, in the first case we must consider the quantity P as being an element of reality, in the second case the quantity Q is an element of reality."
Einstein concluded that the second particle, which we have never directly observed, must have at any moment a position that is real and a momentum that is real. Quantum mechanics does not account for these features of reality. Therefore, quantum mechanics is not complete. It is known, from the uncertainty principle, that position and momentum cannot be measured at the same time. But even though their values can only be determined in distinct contexts of measurement, can they both be definite at the same time? Einstein concluded that the answer must be yes.
The only alternative, claimed Einstein, would be to assert that measuring the first particle instantaneously affected the reality of the position and momentum of the second particle. "No reasonable definition of reality could be expected to permit this."
Bohr was stunned when he read Einstein's paper and spent more than six weeks framing his response, which he gave exactly the same title as the EPR paper. The EPR paper forced Bohr to make a major revision in his understanding of complementarity in the Copenhagen interpretation of quantum mechanics.
Prior to EPR, Bohr had maintained that disturbance caused by the act of observation was the physical explanation for quantum uncertainty. In the EPR thought experiment, however, Bohr had to admit that "there is no question of a mechanical disturbance of the system under investigation." On the other hand, he noted that the two particles were one system described by one quantum function. Furthermore, the EPR paper did nothing to dispel the uncertainty principle.
Later commentators have questioned the strength and coherence of Bohr's response. As a practical matter, however, physicists for the most part did not pay much attention to the debate between Bohr and Einstein, since the opposing views did not affect one's ability to apply quantum mechanics to practical problems, but only affected one's interpretation of the quantum formalism. If they thought about the problem at all, most working physicists tended to follow Bohr's leadership.
So stood the situation for nearly 30 years. Then, in 1964, John Stewart Bell made the groundbreaking discovery that Einstein's local realist world view made experimentally verifiable predictions that would be in conflict with those of quantum mechanics. Bell's discovery shifted the Einstein–Bohr debate from philosophy to the realm of experimental physics. Bell's theorem showed that, for any local realist formalism, there exist limits on the predicted correlations between pairs of particles in an experimental realization of the EPR thought experiment. In 1972, the first experimental tests were carried out. Successive experiments improved the accuracy of observation and closed loopholes. To date, it is virtually certain that local realist theories have been falsified.
So Einstein was wrong. But after decades of relative neglect, the EPR paper has been recognized as prescient, since it identified the phenomenon of quantum entanglement. It has several times been the case that Einstein's "mistakes" have foreshadowed and provoked major shifts in scientific research. Such, for instance, has been the case with his proposal of the cosmological constant, which Einstein considered his greatest blunder, but which currently is being actively investigated for its possible role in the accelerating expansion of the universe. In his Princeton years, Einstein was virtually shunned as he pursued the unified field theory. Nowadays, innumerable physicists pursue Einstein's dream for a "theory of everything."
The EPR paper did not prove quantum mechanics to be incorrect. What it did prove was that quantum mechanics, with its "spooky action at a distance," is completely incompatible with commonsense understanding. Furthermore, the effect predicted by the EPR paper, quantum entanglement, has inspired approaches to quantum mechanics different from the Copenhagen interpretation, and has been at the forefront of major technological advances in quantum computing, quantum encryption, and quantum information theory.