Doubly labeled water


Doubly labeled water is water in which both the hydrogen and the oxygen have been partly or completely replaced with an uncommon isotope of these elements for tracing purposes.
In practice, for both practical and safety reasons, almost all recent applications of the "doubly labeled water" method use water labeled with heavy but non-radioactive forms of each element. In theory, radioactive heavy isotopes of the elements could be used for such labeling; this was the case in many early applications of the method.
In particular, doubly labeled water can be used for a method to measure the average daily metabolic rate of an organism over a period of time. This is done by administering a dose of DLW, then measuring the elimination rates of deuterium and oxygen-18 in the subject over time. At least two samples are required: an initial sample, and a second sample some time later. The time between these samples depends on the size of the animal. In small animals, the period may be as short as 24 hours; in larger animals, the period may be as long as 14 days.
The method was invented in the 1950s by Nathan Lifson and colleagues at the University of Minnesota. However, its use was restricted to small animals until the 1980s because of the high cost of the oxygen-18 isotope. Advances in mass spectrometry during the 1970s and early 1980s reduced the amount of isotope required, which made it feasible to apply the method to larger animals, including humans. The first application to humans was in 1982, by Dale Schoeller, over 25 years after the method was initially discovered. A complete summary of the technique is provided in a book by British biologist John Speakman.

Mechanism of the test

The technique measures a subject's carbon dioxide production during the interval between first and last body water samples. The method depends on the details of carbon metabolism in our bodies. When cellular respiration breaks down carbon-containing molecules to release energy, carbon dioxide is released as a byproduct. Carbon dioxide contains two oxygen atoms and only one carbon atom, but food molecules such as carbohydrates do not contain enough oxygen to provide both oxygen atoms found in CO2. It turns out, one of the two oxygen atoms in CO2 is derived from body water. If the oxygen in water is labeled with 18O, then CO2 produced by respiration will contain labeled oxygen. In addition, as CO2 travels from the site of respiration through the cytoplasm of a cell, through the interstitial fluids, into the bloodstream and then to the lungs some of it is reversibly converted to bicarbonate. So, after consuming water labeled with 18O, the 18O equilibrates with the body's bicarbonate and dissolved carbon dioxide pool. As carbon dioxide is exhaled, 18O is lost from the body. This was discovered by Lifson in 1949. However, 18O is also lost through body water loss. However, deuterium is lost only when body water is lost. Thus the loss of deuterium in body water over time can be used to mathematically compensate for the loss of 18O by the water-loss route. This leaves only the remaining net loss of 18O in carbon dioxide. This measurement of the amount of carbon dioxide lost is an excellent estimate for total carbon dioxide production. Once this is known, the total metabolic rate may be estimated from simplifying assumptions regarding the ratio of oxygen used in metabolism, to carbon dioxide eliminated. This quotient can be measured in other ways, and almost always has a value between 0.7 and 1.0, and for a mixed diet is usually about 0.8.
In lay terms:
SO: from deuterium loss, we know how much of the tagged water left the body as water. And, since the concentration of 18O in the body's water is measured after the labeling dose is given, we also know how much of the tagged oxygen left the body in the water. Measurement of 18O dilution with time gives the total loss of this isotope by all routes. Since the ratio of 18O to total water oxygen in the body is measured, we can convert 18O loss in respiration to total oxygen lost from the body's water pool via conversion to carbon dioxide. How much oxygen left the body as CO2 is the same as the CO2 produced by metabolism, since the body only produces CO2 by this route. The CO2 loss tells us the energy produced, if we know or can estimate the respiratory quotient.

Practical isotope administration

Doubly labeled water may be administered by injection, or orally. Since the isotopes will be diluted in body water, there is no need to administer them in a state of high isotopic purity, no need to employ water in which all or even most atoms are heavy atoms, or even to begin with water which is doubly labeled. It is also unnecessary to administer exactly one atom of 18O for every two atoms of deuterium. This matter in practice is governed by the economics of buying 18O enriched water, and the sensitivity of the mass-spectrographic equipment available.
In practice, doses of doubly labeled water for metabolic work are prepared by simply mixing a dose of deuterium oxide with a second dose of H218O, which is water which has been separately enriched with 18O, but otherwise contains normal hydrogen. The mixed water sample then contains both types of heavy atoms, in a far higher degree than normal water, and is now "doubly labeled." The free interchange of hydrogens between water molecules in liquid water ensures that the pools of oxygen and hydrogen in any sample of water will be separately equilibrated in a short time with any dose of added heavy isotope.

Applications

The doubly labeled water method is particularly useful for measuring average metabolic rate over relatively long periods of time, in subjects for which other types of direct or indirect calorimetric measurements of metabolic rate would be difficult or impossible. For example, the technique can measure the metabolism of animals in the wild state, with the technical problems being related mainly to how to administer the dose of isotope, and collect several samples of body water at later times to check for differential isotope elimination.
Most animal studies involve capturing the subject animals and injecting them, then holding them for a variable period before the first blood sample has been collected. This period depends on the size of the animal involved and varies between 30 minutes for very small animals to 6 hours for much larger animals. In both animals and humans, the test is made more accurate if a single determination of respiratory quotient has been made for the organism eating the standard diet at the time of measurement, since this value changes relatively little compared with the much larger metabolic rate changes related to thermoregulation and activity.
Because the heavy hydrogen and oxygen isotopes used in the standard doubly labeled water measurement are non-radioactive, and also non-toxic in the doses used, the doubly labeled water measurement of mean metabolic rate has been used extensively in human volunteers, and even in infants and pregnant women. The technique has been used on over 200 species of wild animals. Applications of the method to animals have been reviewed.
Doubly labeled water can also be useful for unusually warm ice as it likely has a melting point higher than light water.