In graph theory, an n-dimensional De Bruijngraph of m symbols is a directed graph representing overlaps between sequences of symbols. It has mnvertices, consisting of all possible length-n sequences of the given symbols; the same symbol may appear multiple times in a sequence. If we have the set of m symbols then the set of vertices is: If one of the vertices can be expressed as another vertex by shifting all its symbols by one place to the left and adding a new symbol at the end of this vertex, then the latter has a directed edge to the former vertex. Thus the set of arcs is Although De Bruijn graphs are named after Nicolaas Govert de Bruijn, they were discovered independently by both De Bruijn and I. J. Good. Much earlier, Camille Flye Sainte-Marie implicitly used their properties.
Properties
If then the condition for any two vertices forming an edgeholds vacuously, and hence all the vertices are connected forming a total of edges.
Each vertex has exactly incoming and outgoing edges.
Each -dimensional De Bruijn graph is the line digraph of the -dimensional De Bruijn graph with the same set of symbols.
The line graph construction of the three smallest binary De Bruijn graphs is depicted below. As can be seen in the illustration, each vertex of the -dimensional De Bruijn graph corresponds to an edge of the -dimensional De Bruijn graph, and each edge in the -dimensional De Bruijn graph corresponds to a two-edge path in the -dimensional De Bruijn graph.
Dynamical systems
Binary De Bruijn graphs can be drawn in such a way that they resemble objects from the theory ofdynamical systems, such as the Lorenz attractor : This analogy can be made rigorous: the n-dimensional m-symbol De Bruijn graph is a model of the Bernoulli map The Bernoulli map to the vertex corresponding to the first n digits in the base-mrepresentation of x. Equivalently, walks in the De Bruijn graph correspond to trajectories in a one-sided subshift of finite type. s and a B sequence. In B. each vertex is visited once, whereas in B, each edge is traversed once. Embeddings resembling this one can be used to show that the binary De Bruijn graphs have queue number 2 and that they have book thickness at most 5.