David Snoke


David W. Snoke is a physics professor at the University of Pittsburgh in the Department of Physics and Astronomy. In 2006 he was elected a Fellow of the American Physical Society "for his pioneering work on the experimental and theoretical understanding of dynamical optical processes in semiconductor systems." In 2004 he co-wrote a controversial paper with prominent intelligent design proponent Michael Behe. In 2007, his research group was the first to report Bose-Einstein condensation of polaritons in a trap.
David Snoke and theoretical physicist Jonathan Keeling recently published an article announcing a new era for polariton condensates saying that polaritons are arguably the "...best hope for harnessing the strange effects of quantum condensation and superfluidity in everyday applications."

Academic career

Snoke received his bachelor's degree in physics from Cornell University and his PhD in physics from the University of Illinois at Urbana-Champaign. He has worked for The Aerospace Corporation and was a visiting scientist and Fellow at the Max Planck Institute.
His experimental and theoretical research has focused on fundamental quantum mechanical processes in semiconductor optics, i.e. phase transitions of electrons and holes. Two main thrusts have been Bose-Einstein condensation of excitons
and polaritons.
He has also had minor efforts in numerical biology, and has published on the topic of the interaction of science and theology.

Bose-Einstein Condensation of Polaritons

In 2007, Snoke's research group at the University of Pittsburgh used stress to trap polaritons in confined regions,
similar to the way atoms are confined in traps for Bose–Einstein condensation experiments. The observation of polariton condensation in a trap was significant because the polaritons were displaced from the laser excitation spot, so that the effect could not be attributed to a simple nonlinear effect of the laser light. Later milestones from Snoke and collaborators include showing a clear difference between polariton condensation and standard lasing,
showing quantized circulation of a polariton condensate in a ring,
and the first clear demonstration of Bose-Einstein condensation of polaritons in equilibrium
, in collaboration with the Keith Nelson group at MIT. Prior to this result, polariton condensates were always observed out of equilibrium.
For a general discussion of Bose-Einstein condensation of polaritons, see this page.

Nonequilibrium Dynamics

The basic questions of how systems out of equilibrium approach equilibrium have involved longstanding deep questions of physics, sometimes called the thermodynamic “arrow of time,” with debates going back to Boltzmann. In 1989 Snoke was one of the first to perform simulations of the equilibration of a Bose-Einstein condensate, using numerical solution of the quantum Boltzmann equation
. In 1994 Snoke showed agreement of time-resolved experimental measurements of a particle distribution to solution of the quantum Boltzmann equation
. In 2012 he and theorist Steve Girvin published a seminal paper
on the justification of the Second Law of Thermodynamics based on analysis of the quantum Boltzmann equation, which has impacted the philosophy of the Second Law.
Other work by Snoke has included nonequilibrium dynamics of electron plasma
and the Mott transition from exciton gas to electron-hole plasma.

Numerical Biology

In 2004, Snoke co-authored an article with Michael Behe, a senior fellow of the Discovery Institute's Center for Science and Culture, in the scientific journal Protein Science, which received widespread criticism. Snoke's contribution to the paper was an appendix which verified the numerical results with analytical calculations that showed the relevant power law, namely that for a novel feature requiring multiple neutral mutations, the time to fixation has a sublinear dependence on population size.
Behe has stated that the results of the paper support his notion of irreducible complexity, based on the calculation of the probability of mutations required for evolution to succeed. However, the published version did not address the concept directly; according to Behe, all references to irreducible complexity were eliminated prior to the paper's publication at the behest of the reviewers. Michael Lynch authored a response, to which Behe and Snoke responded. Protein Science discussed the papers in an editorial. Protein Science received letters that "contained many points of disagreement with the Behe and Snoke article", including the points that:
The paper's assumptions have been severely criticised and the conclusions it draws from its mathematical model have been both criticised and contradicted:
On May 7, 2005, Behe described the paper in presenting arguments for irreducible complexity in his testimony at the Kansas evolution hearings. At the Kitzmiller v. Dover Area School District trial later that year it was the one article referenced by both Behe and Scott Minnich as supporting intelligent design. In his ruling, Judge Jones noted that "A review of the article indicates that it does not mention either irreducible complexity or ID. In fact, Professor Behe admitted that the study which forms the basis for the article did not rule out many known evolutionary mechanisms and that the research actually might support evolutionary pathways if a biologically realistic population size were used."
In 2014 David Snoke, along with coauthors Jeffrey Cox and Donald Petcher, published a numerical study of the evolution of novel structures, in the journal Complexity. The model addressed the fundamental problem of the tradeoff of the cost of allowing novel structures which are not yet functional, versus the benefit of the eventual new function. It was shown that natural assumptions for these tradeoffs lead to severe constraints on the production of new structures, with most scenarios leading to a dramatic increase of useless, or “vestigial,” structures in a population. The lack of observation of such large vestigiality points to fine tuning of the mechanisms of evolution.

Science and Theology

His book, A Biblical Case for an Old Earth was described in a review by Law Professor David W. Opderbeck, in the American Scientific Affiliation's Perspectives on Science and Christian Faith as "succeed admirably" in "establish that the 'day-age' view is a valid alternative for Christians who hold to biblical inerrancy", but as "less persuasive" at "argu for a concordist understanding of the Genesis texts and modern science." Snoke was elected a Fellow of the American Scientific Affiliation in 2006.
In 2014 he published a review article for the Discovery Institute
. arguing that the prevailing paradigm of modern systems biology favors an intelligent design perspective, namely that systems biologists commonly assume a “good design” paradigm.