Cultured meat


Cultured meat is meat produced by in vitro cell culture of animal cells, instead of from slaughtered animals. It is a form of cellular agriculture.
Cultured meat is produced using many of the same tissue engineering techniques traditionally used in regenerative medicine. The concept of cultured meat was popularized by Jason Matheny in the early 2000s after co-authoring a seminal paper on cultured meat production and creating New Harvest, the world's first non-profit organization dedicated to supporting in vitro meat research.
In 2013, Mark Post, a professor at Maastricht University, was the first to showcase a proof-of-concept for cultured meat by creating the first burger patty grown directly from cells. Since then, several cultured meat prototypes have gained media attention: however, because of limited dedicated research activities, cultured meat has not yet been commercialized, although several plants for the production of cultured meat are already being built. Memphis meat and Supermeat claim that they can bring lab grown meat to the market sometime in 2020. Because cultured meat is not yet commercially available, it has yet to be seen whether consumers will accept cultured meat as meat.
The production process still has much room for improvement, but it has advanced under various companies. Its applications lead it to have several prospective moral, health, environmental, cultural, and economic considerations in comparison to conventional meat.

Nomenclature

Besides cultured meat, the terms healthy meat,slaughter-free meat, in vitro meat, vat-grown, lab-grown meat, cell-based meat, clean meat, cultivated meat and synthetic meat have all been used by various outlets to describe the product.
Between 2016 and 2019, clean meat gained traction as the term preferred by some journalists, advocates, and organizations that support the technology. The Good Food Institute coined the term in 2016, and in late 2018 published research which claimed that "clean" better reflected the production and benefits of the meat and surpassed "cultured" and "in vitro" in media mentions and Google searches. Despite this, some industry stakeholders felt that the term unnecessarily alienated conventional meat producers, continuing to prefer cell-based meat as a neutral alternative.
In September 2019, GFI announced new research which found that the term cultivated meat is sufficiently descriptive and differentiating, possesses a high degree of neutrality, and ranks highly for consumer appeal.

History

20th century

The theoretical possibility of growing meat in an industrial setting has long captured the public imagination. Winston Churchill suggested in 1931: "We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium."
In vitro cultivation of muscular fibers was performed as early as 1971 by Russell Ross. Indeed, the abstract was
In 1998 Jon F. Vein of the United States filed for, and ultimately secured, a patent for the production of tissue engineered meat for human consumption, wherein muscle and fat cells would be grown in an integrated fashion to create food products such as beef, poultry and fish.

Early 21st century

In 2001, dermatologist Wiete Westerhof from the University of Amsterdam, medical doctor Willem van Eelen, and businessman Willem van Kooten announced that they had filed for a worldwide patent on a process to produce cultured meat. In the process, a matrix of collagen is seeded with muscle cells, which are then bathed in a nutritious solution and induced to divide. Scientists in Amsterdam study the culture medium, while the University of Utrecht studies the proliferation of muscle cells, and the Eindhoven University of Technology is researching bioreactors.
NASA has been conducting experiments since 2001, originally producing cultured meat from turkey cells. The technology to produce cultured meat in space would allow long-term astronauts to grow meat without sacrificing travel storage.
In 2002, the NSR/Touro Applied BioScience Research Consortium was able to grow a fish filet-like product from goldfish cells.
In 2003, Oron Catts and Ionat Zurr of the Tissue Culture and Art Project and Harvard Medical School exhibited in Nantes a "steak" a few centimetres wide, grown from frog stem cells, which was cooked and eaten.
The first peer-reviewed journal article published on the subject of laboratory-grown meat appeared in a 2005 issue of Tissue Engineering.
In 2008, PETA offered a $1 million prize to the first company to bring lab-grown chicken meat to consumers by 2012. The contestant was required to complete two tasks before receiving the prize: "Produce a cultured chicken meat product that was indistinguishable from real chicken," and "Produce the product in large enough quantities to be competitively sold in at least 10 states." The contest was extended until 4 March 2014. Since 2008 when the challenge was first announced, researchers around the world have made significant headway into the production of cultured meat. The deadline eventually expired without a winner, however the publicity around the topic brought cultured meat further into the eyes of scientists.
The Dutch government has put $4 million into experiments regarding cultured meat. The In Vitro Meat Consortium, a group formed by international researchers interested in the technology, held the first international conference on the production of cultured meat, hosted by the Food Research Institute of Norway in April 2008, to discuss commercial possibilities.
Time magazine declared cultured meat production to be one of the 50 breakthrough ideas of 2009.
In November 2009, scientists from the Netherlands announced they had managed to grow meat in the laboratory using the cells from a live pig.
As of 2012, 30 laboratories from around the world have announced that they are working on cultured meat research.
The first cultured beef burger patty, created by Dr. Mark Post at Maastricht University, was eaten at a demonstration for the press in London in August 2013. It was made from over 20,000 thin strands of muscle tissue. This burger cost Dr. Post over $300,000 to make and over 2 years to produce. Two other companies have also begun to culture meat; Memphis Meats in the US and SuperMeat in Israel.
A report from July 2019 states that the price of making a cultured meat burger is expected to drop to $10 by 2021. Several companies have invested research in recent years into the development of cultured meat, such as Mosa Meat and Biotech Foods. The first cultured meat burger from Mosa Meats was produced in 2013 and cost $280,000.

First public trial

On 5 August 2013, the world's first lab-grown burger was cooked and eaten at a news conference in London. Scientists from Maastricht University in the Netherlands, led by professor Mark Post, had taken stem cells from a cow and grown them into strips of muscle which they then combined to make a burger. The burger was cooked by chef Richard McGeown of Couch's Great House Restaurant, Polperro, Cornwall, and tasted by critics Hanni Rützler, a food researcher from the Future Food Studio and Josh Schonwald. Rützler stated,
There is really a bite to it, there is quite some flavour with the browning. I know there is no fat in it so I didn't really know how juicy it would be, but there is quite some intense taste; it's close to meat, it's not that juicy, but the consistency is perfect. This is meat to me... It's really something to bite on and I think the look is quite similar.

Rützler added that even in a blind trial she would have taken the product for meat rather than a soya copy.
Tissue for the London demonstration was cultivated in May 2013, using about 20,000 thin strips of cultured muscle tissue. Funding of around €250,000 came from an anonymous donor later revealed to be Sergey Brin. Post remarked that "there's no reason why it can't be cheaper...If we can reduce the global herd a millionfold, then I'm happy".

Industry development

Since Dr. Post successfully produced the first cultured meat burger in 2013, a variety of startups and organizations dedicated to developing or advancing cultured meat have been founded. In 2015, Maastricht University hosted the first International Conference on Cultured Meat. As the field has grown, nonprofit organizations such as New Harvest and The Good Food Institute have begun hosting annual conferences to convene industry leaders, scientists, investors, and potential collaborators from parallel industries. In 2018, the book The End of Animal Farming by Jacy Reese Anthis argued that cultured meat and plant-based foods would displace conventional animal products by 2100. As of 2019, over two dozen startups working on cultured meat have been founded.
Memphis Meats, a Silicon Valley startup founded by a cardiologist, launched a video in February 2016 showcasing its cultured beef meatball. In March 2017, it showcased chicken tenders and duck a l'orange, the first cultured poultry-based foods shown to the public.
An Israeli company, SuperMeat, ran a viral crowdfunding campaign in 2016 for its work on cultured chicken.
Finless Foods, a San Francisco-based company aimed at cultured fish, was founded in June 2016. In March 2017 it commenced laboratory operations and progressed quickly. Director Mike Selden said in July 2017 to expect bringing cultured fish products on the market within two years.
In March 2018, JUST, Inc. claimed to be able to present a consumer product from cultured meat by the end of 2018. According to CEO Josh Tetrick the technology is already there, and now it is merely a matter of applying it. JUST has about 130 employees and a research department of 55 scientists, where lab meat from poultry, pork and beef is being developed. They would have already solved the problem of feeding the stem cells with only plant resources. JUST receives sponsoring from Chinese billionaire Li Ka-shing, Yahoo! co-founder Jerry Yang and according to Tetrick also from Heineken International amongst others.
The Dutch startup Meatable, consisting of Krijn de Nood, Daan Luining, Ruud Out, Roger Pederson, Mark Kotter and Gordana Apic among others, reported in September 2018 it had succeeded in growing meat using pluripotent stem cells from animals' umbilical cords. Although such cells are reportedly difficult to work with, Meatable claimed to be able to direct them to behave using their proprietary technique in order to become muscle cells or fat cells as needed. The major advantage is that this technique bypasses fetal bovine serum, meaning that no animal has to be killed in order to produce meat. That month, it was estimated there were about 30 cultured meat startups across the world. A Dutch House of Representatives Commission meeting discussed the importance and necessity of governmental support for researching, developing and introducing cultured meat in society, speaking to representatives of three universities, three startups and four civil interest groups on 26 September 2018.
In August 2019, five startups announced the formation of the Alliance for Meat, Poultry & Seafood Innovation, a coalition seeking to work with government regulators to create a pathway to market for cultured meat and seafood. The founding members include JUST, Inc., Memphis Meats, Finless Foods, BlueNalu, and Fork & Goode.
In 2019, the Foieture project was launched in Belgium with the goal of developing cultured foie gras by a consortium of 3 companies and 3 non-profit institutes. With the others' assistance, Peace of Meat stated in December 2019 it seeks to complete its proof of concept in 2020, to produce its first prototype in 2022, and to enter the market in 2023. That month, the Foieture project received a research grant of almost 3.6 million euros from the Innovation and Enterprise Agency of the Flemish Government. In May 2020, Peace of Meat's Austrian-born cofounder and scientific researcher Eva Sommer stated that the startup was then able to produce 20 grams of cultured fat at a cost of about 300 euros ; the goal was to reduce the price to 6 euros per kilogram by 2030. Piece of Meat would soon build two laboratories in the Port of Antwerp.
In January 2020, Quartz claimed there were 'around 30 cultured startups around the world', and that Memphis Meats, Just Inc. and Future Meat Technologies were the most advanced because they were building the first pilot plants. According to New Scientist in May 2020, there were 'around 60 start-ups around the world developing and improving the cultured meat process'; some of these didn't produce any clean meat themselves, but provided others with the latest technological tools or experimental information. Growth media reportedly still cost 'hundreds of dollars per litre, but for clean meat production to scale this needs to drop to around $1 a litre.'

Production in Earth's orbit

In 2019, meat was successfully
cultured in space for the first time. Through Aleph Farms,
meat was grown on the International Space Station, 248 miles above the Earth, away from any natural resources.

Overview of startups

Production

There are three stages in the production of cultured meat: selection of starter cells, treatment of growth medium, and scaffolding.

Starter cells

The initial stage of growing cultured meat is to collect cells that have a rapid rate of proliferation. Such cells include embryonic stem cells, adult stem cells, myosatellite cells, or myoblasts. Stem cells proliferate the quickest, but have not yet begun development towards a specific kind of cell, which creates the challenge of splitting the cells and directing them to grow a certain way. Fully developed muscle cells are ideal in the aspect that they have already finished development as a muscle, but proliferate hardly at all. Therefore, cells such as myosatellite and myoblast cells are often used as they still proliferate at an acceptable rate, but also sufficiently differentiate from other types of cells.

Growth medium

The cells are then treated by applying a solution that promotes tissue growth, which is known as a growth medium. These mediums should contain the necessary nutrients and appropriate quantity of growth factors. They are then placed in a culture medium, in a bio-reactor, which is able to supply the cells with the energetic requirements they need.

Scaffold

To culture three-dimensional meat, the cells are grown on a scaffold, which is a component that directs its structure and order. The ideal scaffold is edible so the meat does not have to be removed, and periodically moves to stretch the developing muscle, thereby simulating the animal body during normal development. Additionally the scaffold must maintain flexibility in order to not detach from the developing myotubes. Scaffold must also allow vascularization in order for normal development of muscle tissue.

Heme Proteins

In October 2019 MDPI published an article entitled Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat that claimed that skeletal muscle-tissue engineering can be applied to produce cell-based meat for human consumption. Myoglobin was reported to have increased the proliferation and metabolic activity of bovine muscle satellite cells. The addition of either myoglobin or hemoglobin was reported to change of color of the product to more closly resemble traditional beef.

Additive manufacturing

An Israeli company MeaTech proposes to use 3D printing techniques to improve the texture of cultured meat to more resemble the natural product.

Other considerations

Scaffold-based production techniques can only be appropriately used in boneless or ground meats. The end result of this process would be meats such as hamburgers or sausages. In order to create more structured meats, for example steak, muscle tissue must be structured in directed and self-organized means or by proliferation of muscle tissue already existing. Additionally, the presence of gravitational, magnetic, fluid flow, and mechanical stress fields has an effect on the proliferation rates of the muscle cells. Processes of tension such as stretching and relaxing increased differentiation into muscle cells.
Once this process has been started, it would be theoretically possible to continue producing meat indefinitely without introducing new cells from a living organism.
In cultured meat production, a preservative such as sodium benzoate is used to protect the growing meat from bacteria and yeast and other fungi. Collagen powder, xanthan gum, mannitol and cochineal could be used in different ways during the process.
The price of cultured meat at retail outlets like grocery stores and supermarkets may decrease to levels that middle-class consumers consider to be "inexpensive" due to technological advancements.

Research challenges

The science for cultured meat is an outgrowth of the field of biotechnology known as tissue engineering. The technology is simultaneously being developed along with other uses for tissue engineering such as helping those with muscular dystrophy and, similarly, growing transplant organs. There are several obstacles to overcome if it has any chance of succeeding; at the moment, the most notable ones are scale and cost.
Additionally, there is no dedicated scientific research discipline for cellular agriculture and its development. The past research undertaken into cellular agriculture were isolated from each other, and they did not receive significant academic interest. Although it currently exists, long-term strategies are not sufficiently funded for development and severely lack a sufficient amount of researchers.

Differences from conventional meat

Health

Large-scale production of cultured meat may or may not require artificial growth hormones to be added to the culture for meat production.
Researchers have suggested that omega-3 fatty acids could be added to cultured meat as a health bonus. In a similar way, the omega-3 fatty acid content of conventional meat can also be increased by altering what the animals are fed. An issue of Time magazine has suggested that the cell-cultured process may also decrease exposure of the meat to bacteria and disease.
Due to the strictly controlled and predictable environment, cultured meat production has been compared to vertical farming, and some of its proponents have predicted that it will have similar benefits in terms of reducing exposure to dangerous chemicals like pesticides and fungicides, severe injuries, and wildlife.
Concern in regards to developing antibiotic resistance due to the use of antibiotics in livestock, and livestock-derived meat serving as a major source of disease outbreaks, and long-term processed meat consumption being associated with increased heart disease, digestive tract cancer, and type 2 diabetes currently plague livestock-based meat. In regards to cultured meat, strict environmental controls and tissue monitoring can prevent infection of meat cultures from the outset, and any potential infection can be detected before shipment to consumers.
In addition to the prevention and lack of diseases, and lack of the use of antibiotics or any other chemical substances, cultured meat can also leverage numerous biotechnology advancements, including increased nutrient fortification, individually-customized cellular and molecular compositions, and optimal nutritional profiles, all making it much healthier than livestock-sourced meat.

Artificiality

Although cultured meat is real meat consisting of genuine animal muscle cells, fat and support cells, as well as blood vessels, that are the same in traditional meat, some consumers may find the high-tech production process distasteful. Cultured meat has been described as fake or "Frankenmeat". Clean meat can be produced without the artificial hormones, antibiotics, steroids, medicine, and GMOs commonly used in factory farmed meat and seafood.
If a cultured meat product is different in appearance, taste, smell, texture, or other factors, it may not be commercially competitive with conventionally produced meat. The lack of bone and cardiovascular system may be a disadvantage for dishes where these parts make appreciable culinary contributions. However, the lack of bones and/or blood may make many traditional meat preparations, such as buffalo wings, more palatable to small children. Furthermore, cultured blood and bones could potentially be produced in the future as well.

Environmental

There have historically been concerns from the United Nations about the unrelenting production of traditional meat production for the growing world population. Animal production for food has been one of the major causes of air/water pollution and global warming. There is significant doubt that the traditional industry will be able to keep up with the rapidly increasing demands for meat, pushing many entrepreneurs and researchers towards development of cultured meat as an alternative. Cultured meat looks to provide an environmentally conscious alternative to traditional meat production.
Research has suggested that environmental impacts of cultured meat would be significantly lower than normally slaughtered beef. For every hectare that is used for vertical farming and/or cultured meat manufacturing, anywhere between 10 and 20 hectares of land may be converted from conventional agriculture usage back into its natural state. Vertical farms could exploit methane digesters to generate a small portion of its own electrical needs. Methane digesters could be built on site to transform the organic waste generated at the facility into biogas which is generally composed of 65% methane along with other gasses. This biogas could then be burned to generate electricity for the greenhouse or a series of bioreactors.
A study by researchers at Oxford and the University of Amsterdam found that cultured meat was "potentially... much more efficient and environmentally-friendly", generating only 4% greenhouse gas emissions, reducing the energy needs of meat generation by up to 45%, and requiring only 2% of the land that the global meat/livestock industry does. The patent holder Willem van Eelen, the journalist Brendan I. Koerner, and Hanna Tuomisto, a PhD student from Oxford University all believe it has less environmental impact.
One skeptic is Margaret Mellon of the Union of Concerned Scientists, who speculates that the energy and fossil fuel requirements of large-scale cultured meat production may be more environmentally destructive than producing food off the land. However, S.L. Davis has speculated that both vertical farming in urban areas and the activity of cultured meat facilities may cause relatively little harm to the species of wildlife that live around the facilities. Dickson Despommier speculated that natural resources may be spared from depletion due to vertical farming and cultured meat, making them ideal technologies for an overpopulated world. One study has shown that conventional farming kills ten wildlife animals per hectare each year.

Role of genetic modification

Techniques of genetic engineering, such as insertion, deletion, silencing, activation, or mutation of a gene, are not required to produce cultured meat. Cultured meat production allows the biological processes that normally occur within an animal to occur without the animal. Since cultured meat is grown in a controlled, artificial environment, some have commented that cultured meat more closely resembles hydroponic vegetables, rather than GMO vegetables.
More research is being done on cultured meat, and although the production of cultured meat does not require techniques of genetic engineering, there is discussion among researchers about utilizing such techniques to improve the quality and sustainability of cultured meat. Fortifying cultured meat with nutrients such as beneficial fatty acids is one improvement that can be facilitated through genetic modification. The same improvement can be made without genetic modification, by manipulating the conditions of the culture medium. Genetic modification may also play a role in the proliferation of muscle cells. The introduction of myogenic regulatory factors, growth factors, or other gene products into muscle cells may increase production past the capacity of conventional meat.
To avoid the use of any animal products, the use of photosynthetic algae and cyanobacteria has been proposed to produce the main ingredients for the culture media, as opposed to the very commonly used fetal bovine or horse serum. Some researchers suggest that the ability of algae and cyanobacteria to produce ingredients for culture media can be improved with certain technologies, most likely not excluding genetic engineering.

Ethical considerations

The Australian bioethicist Julian Savulescu said
"Artificial meat stops cruelty to animals, is better for the environment, could be safer and more efficient, and even healthier. We have a moral obligation to support this kind of research. It gets the ethical two thumbs up."
Animal welfare groups are generally in favor of the production of cultured meat because it does not have a nervous system and therefore cannot feel pain. Reactions of vegetarians to cultured meat vary: some feel the cultured meat presented to the public in August 2013 was not vegetarian as fetal calf serum was used in the growth medium. However, since then lab grown meat has been grown under a medium that doesn't involve bovine serum. American philosopher Carlo Alvaro argues that the question of the morality of eating in vitro meat has been discussed only in terms of convenience. Alvaro proposes a virtue-oriented approach that may reveal aspects of the issue not yet explored, such as the suggestion that the obstinacy of wanting to produce lab-grown meat stems from unvirtuous motives, i.e., "lack of temperance and misunderstanding of the role of food in human flourishing."
Independent inquiries may be set up by certain governments to create a degree of standards for cultured meat. Laws and regulations on the proper creation of cultured meat products would have to be modernized to adapt to this newer food product. Some societies may decide to block the creation of cultured meat for the "good of the people" – making its legality in certain countries a questionable matter.
Cultured meat needs technically sophisticated production methods making it harder for communities to produce food self-sufficiently and potentially increasing dependence on global food corporations.

Regulation

Once cultured meat becomes more cost-efficient, it is necessary to decide who will regulate the safety and standardization of these products. Prior to being available for sale, the European Union and Canada will require approved novel food applications. Additionally, the European Union requires that cultured animal products and production must prove safety, by an approved company application, which became effective as of 1 January 2018.
Within the United States, the FDA and the USDA have agreed to jointly regulate cultured meat. Under the agreement, the FDA oversees cell collection, cell banks, and cell growth and differentiation, while the USDA oversees the production and labeling of human food products derived from the cells.

Religious considerations

rabbinical authorities disagree whether cultured meat is kosher. However, many rabbis agree that if the original cells were taken from a slaughtered kosher animal then the cultured meat will be kosher. Some even think that it would be kosher even if coming from non-kosher animals like pigs, as well as from live animals, however some disagree.
With the development of cultured meat as a potentially large-scale product in the coming years, concerns from the Islamic faith regarding its viability are becoming increasingly important. The Islamic Institute of Orange County in California has responded to the Islamic consumption of embryonic stem cell cultured meat saying, "There does not appear to be any objection to eating this type of cultured meat." In addition, Abdul Qahir Qamar of the International Islamic Fiqh Academy is quoted saying that cultured meat "will not be considered meat from live animals, but will be cultured meat." He continues to define that excluding cells derived from pigs, dogs, and other halal banned animals, the meat would be considered vegetative and "similar to yogurt and fermented pickles."
Debate in India over the Hindu consumption of cultured meat mainly excludes steak and burgers. Chandra Kaushik, president of the Hindu Mahasabha reports that he would "not accept it being traded in a marketplace in any form or being used for a commercial purpose."

Economic

The production of cultured meat is currently very expensive – in 2008 it was about $1 million for a piece of beef weighing – and it would take considerable investment to switch to large-scale production. However, the In Vitro Meat Consortium has estimated that with improvements to current technology there could be considerable reductions in the cost of cultured meat. They estimate that it could be produced for €3500/tonne, which is about twice the cost of unsubsidized conventional European chicken production.
In a March 2015 interview with Australia's ABC, Mark Post said that the marginal cost of his team's original €250,000 burger was now €8.00. He estimates that technological advancements would allow the product to be cost-competitive to traditionally sourced beef in approximately ten years. In 2016, the cost of production of cultured beef for food technology company Memphis Meats was. As of June 2017 Memphis Meats reduced the cost of production to below $2,400 per pound, in February 2018 to $1,700 per pound and even further after that.

Consumer acceptance

Cultured meat will likely be exposed to the public on a global scale in the coming years, making consumer acceptance of the product an important concern. Research is being done to identify how consumers will accept cultured meat into the market. A study looking at acceptance of cultured meat in China, India, and the USA "found high levels of acceptance of clean meat in the three most populous countries worldwide."
Several potential factors of consumer acceptance of cultured meat have been identified. Healthiness, safety, nutritional characteristics, sustainability, taste, and lower price, are all potential factors. One study found that the use of highly technical language to explain cultured meat led to significantly more negative public attitude towards the concept. Similarly, it is suggested that describing cultured meat in a way that emphasizes the final product rather than the production method was an effective way to improve acceptance. Low percentages of older adult populations have been reported to show acceptance for cultured meat. Green eating behavior, educational status, and food business, were cited as most important factors for this population.
The use of standardized descriptions would improve future research about consumer acceptance of cultured meat. Current studies have often reported drastically different rates of acceptance of the product, despite surveying similar populations. More comparable research is considered a future goal for consumer acceptance studies of cultured meat.
It is currently unknown how cultured meat will be received in worldwide markets. Large amounts of studies are attempting to determine the current levels of consumer acceptance and identify methods to improve this value. Currently there is a lack of clear answers surrounding this unknown, although a recent study has shown that consumers are a premium for cultured meat.

In fiction

Cultured meat has often featured in science fiction. The earliest mention may be in Two Planets by Kurd Lasswitz, where "synthetic meat" is one of the varieties of synthetic food introduced on Earth by Martians. Other notable books mentioning artificial meat include Ashes, Ashes by René Barjavel; The Space Merchants by Frederik Pohl and C.M. Kornbluth; The Restaurant at the End of the Universe by Douglas Adams; Le Transperceneige by Jacques Lob and Jean-Marc Rochette; Neuromancer by William Gibson; Oryx and Crake by Margaret Atwood; Deadstock by Jeffrey Thomas; Accelerando by Charles Stross; Ware Tetralogy by Rudy Rucker; Divergent by Veronica Roth; and the Vorkosigan Saga by Lois McMaster Bujold.
In film, artificial meat has featured prominently in Giulio Questi's 1968 drama La morte ha fatto l'uovo and Claude Zidi's 1976 comedy L'aile ou la cuisse. "Man-made" chickens also appear in David Lynch's 1977 surrealist horror, Eraserhead. Most recently, it was also featured prominently as the central theme of the movie Antiviral.
The Starship Enterprise from the TV and movie franchise Star Trek apparently provides a synthetic meat or cultured meat as a food source for the crew, although crews from The Next Generation and later use replicators.
In the ABC sitcom Better Off Ted, the episode "Heroes" features Phil and Lem trying to grow cowless beef.
In the videogame Project Eden, the player characters investigate a cultured meat company called Real Meat.
In the movie "GalaxyQuest", during the dinner scene, Tim Allen's character refers to his steak tasting like "real Iowa beef".
In The Expanse “vat-grown” meat is produced to feed the people who live on spaceships/space stations away from Earth, due to the exorbitant cost of importing real meat.

In popular culture

Cultured meat was a subject on an episode of the Colbert Report on 17 March 2009.
In February 2014, a biotech startup called BiteLabs ran a campaign to generate popular support for artisanal salami made with meat cultured from celebrity tissue samples. The campaign became popular on Twitter, where users tweeted at celebrities asking them to donate muscle cells to the project. Media reactions to BiteLabs variously identified the startup as a satire on startup culture, celebrity culture, or as a discussion prompt on bioethical concerns. While BiteLabs claimed to be inspired by the success of Sergey Brin's burger, the company is seen as an example of critical design rather than an actual business venture.
In late 2016, cultured meat was involved in a case in the episode "How The Sausage Is Made" of CBS show Elementary.