Counter-battery fire


Counter-battery fire is a battlefield military activity to defeat the enemy's indirect fire elements, including their target acquisition, command and control components. Counter-battery arrangements and responsibilities vary between nations but involve target acquisition, planning and control, and counter-fire. Counter-battery fire rose to prominence in World War I.
Counter-battery radar detects incoming indirect fire and calculates where it was fired from. That location data can be sent by a communications link to friendly forces, who can then fire on the enemy positions, hopefully before they can reposition. Counter-RAM systems track incoming rocket, artillery, and mortar fire and attempt to intercept and destroy the projectiles or provide early warning to the target area.

Background

was introduced so that artillery could fire from behind cover to reduce its exposure to enemy artillery by making itself more difficult to find. While armies were doing this, little thought was given to the need for counter-counter measures. Perhaps the only means of finding concealed guns was observation from kites or balloons. However, effective counter-battery fire needs far more than a single method of observation. Counter-battery fire emerged and developed extremely quickly during World War I. Since that war, CB has continued to evolve, mainly due to improvements in technology.
The targets of CB fire are usually the enemy's guns, launchers and mortars, both the materiel and the men serving them. The formal NATO definition of the term counter-battery is "fire delivered for the purpose of destroying or neutralising the enemy's fire support system", with the note that it may be proactive or reactive. This may be achieved by attacks on any part of the field artillery system. In some armies at some periods CB has been called 'counter-bombardment' and occasionally 'counter-mortar' has been handled separately.

Functions

There are four functions in the system for CB fire:
Target acquisition is the source of information for CB intelligence. It may produce accurate locations for enemy fire units or merely inputs to a more complex process for locating and assessing hostile artillery. At the end of World War I, the following were recognised as the principal sources of artillery intelligence, this seems to be in descending order of usefulness:
Apart from balloons and officers' patrols, these sources continued to play their part in World War II, and their technology improved, although flash spotting became less useful as ranges increased and flashless propellants became widespread. A successor to officers' patrols had an isolated emergence in Italy when Canadian artillery observers were put ashore behind German lines and established themselves to observe gun positions.
Sound ranging and flash spotting both required enemy guns to fire. Furthermore, others, such as radio direction finding and information from prisoners, are insufficiently precise to 'fix' a target for artillery attack. Information from others may not be received quickly and hence be out of date, the hostile battery having moved.
These methods were joined by radar in World War II; while this could detect a shell in flight the gun that fired it could not usually be seen and the shell's elliptical trajectory made it impossible to extrapolate backwards with the technology of that time. However, mortar bombs have a parabolic trajectory defined by a simple mathematical equation with two points on the parabolic curve. It was therefore possible to deduce a mortar's position by tracking its bomb and recording two points on its trajectory. Another method that emerged was crater examination, this could reveal the azimuth back to the hostile gun or mortar and study of fragments could reveal its type. However, while it was a useful source of information it was not sufficiently accurate to give a location for the firer.
Most armies abandoned flash spotting in the 1950s. However, several new target acquisition technologies emerged. These included:
CB Intelligence applies the intelligence cycle and principles to CB. It uses information about hostile artillery from all sources to maintain detailed records and apply specialist techniques that exploit the nature of artillery fire to produce:
CB Intelligence is usually combined with CB fire control, although intelligence purists recognise this is not good practice and the two were separate in the British forces in France in World War I. In both World Wars CB intelligence and CB control were found to be most effective when they were at corps level. However, the final year of World War 2 showed that the counter mortar battle was really one for brigade level. Since that war CB has tended to move to lower levels and in some armies has grown into a wider deep supporting fire organisation.

CB fire control

It does not always make tactical sense to attack hostile batteries the moment they are located. This is magnified by the challenges of targeting hostile batteries. There are many factors, and their significance depends on the circumstances. The first issue, for targeting, is that it is difficult to 'knock-out' a battery, although smart munitions against SP guns may change this. As the quoted definition states 'Destroy' is one possibility, another is "neutralization", to render the battery temporarily ineffective or unusable, including by suppressing it or forcing it to move. However, "suppression" only lasts while CB fire is falling and if a hostile battery moves then it has to be found again. Sometimes it is best just to record the location of the hostile battery and leave it for later.
An additional issue for the use of counter battery fire is the finite artillery resources available for use in a given situation.

CB fire units

The final aspect of the CB equation is having available CB fire units and appropriate munitions. Typically these are general supporting fire units, but direct supporting fire units are also used if they are available and not fully occupied by their primary role. With conventional HE shells it may require the concentrated fire of 5–10 batteries to deal effectively with one hostile battery. Hence the attraction multi-rocket launchers such as MLRS able to deliver a heavy and concentrated attack from relatively few launchers.

Counter-measures

Counter-measures to CB fire have emerged throughout history. These include:
Of course there are many potential target "nodes" in the field artillery system, including those dedicated to finding hostile artillery. Attacking these may significantly blind the enemy's CB capability—counter-countermeasures.