Control theory


Control theory deals with the control of continuously operating dynamical systems in engineered processes and machines. The objective is to develop a control model for controlling such systems using a control action in an optimum manner without delay or overshoot and ensuring control stability. Control theory may be considered a branch of control engineering, computer engineering, mathematics, cybernetics and operations research, since it relies on the theoretical and practical application of the related disciplines.
To do this, a controller with the requisite corrective behavior is required. This controller monitors the controlled process variable, and compares it with the reference or set point. The difference between actual and desired value of the process variable, called the error signal, or SP-PV error, is applied as feedback to generate a control action to bring the controlled process variable to the same value as the set point. Other aspects which are also studied are controllability and observability. This is the basis for the advanced type of automation that revolutionized manufacturing, aircraft, communications and other industries. This is feedback control, which is usually continuous and involves taking measurements using a sensor and making calculated adjustments to keep the measured variable within a set range by means of a "final control element", such as a control valve.
Extensive use is usually made of a diagrammatic style known as the block diagram. In it the transfer function, also known as the system function or network function, is a mathematical model of the relation between the input and output based on the differential equations describing the system.
Control theory dates from the 19th century, when the theoretical basis for the operation of governors was first described by James Clerk Maxwell. Control theory was further advanced by Edward Routh in 1874, Charles Sturm and in 1895, Adolf Hurwitz, who all contributed to the establishment of control stability criteria; and from 1922 onwards, the development of PID control theory by Nicolas Minorsky.
Although a major application of control theory is in control systems engineering, which deals with the design of process control systems for industry, other applications range far beyond this. As the general theory of feedback systems, control theory is useful wherever feedback occurs.

History

Although control systems of various types date back to antiquity, a more formal analysis of the field began with a dynamics analysis of the centrifugal governor, conducted by the physicist James Clerk Maxwell in 1868, entitled On Governors. A centrifugal governor was already used to regulate the velocity of windmills. Maxwell described and analyzed the phenomenon of self-oscillation, in which lags in the system may lead to overcompensation and unstable behavior. This generated a flurry of interest in the topic, during which Maxwell's classmate, Edward John Routh, abstracted Maxwell's results for the general class of linear systems. Independently, Adolf Hurwitz analyzed system stability using differential equations in 1877, resulting in what is now known as the Routh–Hurwitz theorem.
A notable application of dynamic control was in the area of manned flight. The Wright brothers made their first successful test flights on December 17, 1903 and were distinguished by their ability to control their flights for substantial periods. Continuous, reliable control of the airplane was necessary for flights lasting longer than a few seconds.
By World War II, control theory was becoming an important area of research. Irmgard Flügge-Lotz developed the theory of discontinuous automatic control systems, and applied the bang-bang principle to the development of automatic flight control equipment for aircraft. Other areas of application for discontinuous controls included fire-control systems, guidance systems and electronics.
Sometimes, mechanical methods are used to improve the stability of systems. For example, ship stabilizers are fins mounted beneath the waterline and emerging laterally. In contemporary vessels, they may be gyroscopically controlled active fins, which have the capacity to change their angle of attack to counteract roll caused by wind or waves acting on the ship.
The Space Race also depended on accurate spacecraft control, and control theory has also seen an increasing use in fields such as economics and artificial intelligence. Here, one might say that the goal is to find an internal model that obeys the good regulator theorem. So, for example, in economics, the more accurately a trading model represents the actions of the market, the more easily it can control that market. In AI, an example might be a chatbot modelling the discourse state of humans: the more accurately it can model the human state, the better it can manipulate the human. These last two examples take the narrow historical interpretation of control theory as a set of differential equations modeling and regulating kinetic motion, and broaden it into a vast generalization of a regulator interacting with a plant.

Open-loop and closed-loop (feedback) control

Fundamentally, there are two types of control loops: open loop control and closed loop control.
In open loop control, the control action from the controller is independent of the "process output". A good example of this is a central heating boiler controlled only by a timer, so that heat is applied for a constant time, regardless of the temperature of the building. The control action is the timed switching on/off of the boiler, the process variable is the building temperature, but neither is linked.
In closed loop control, the control action from the controller is dependent on feedback from the process in the form of the value of the process variable. In the case of the boiler analogy, a closed loop would include a thermostat to compare the building temperature with the temperature set on the thermostat. This generates a controller output to maintain the building at the desired temperature by switching the boiler on and off. A closed loop controller, therefore, has a feedback loop which ensures the controller exerts a control action to manipulate the process variable to be the same as the "Reference input" or "set point". For this reason, closed loop controllers are also called feedback controllers.
The definition of a closed loop control system according to the British Standard Institution is "a control system possessing monitoring feedback, the deviation signal formed as a result of this feedback being used to control the action of a final control element in such a way as to tend to reduce the deviation to zero."
Likewise; "A Feedback Control System is a system which tends to maintain a prescribed relationship of one system variable to another by comparing functions of these variables and using the difference as a means of control."

Other examples

An example of a control system is a car's cruise control, which is a device designed to maintain vehicle speed at a constant desired or reference speed provided by the driver. The controller is the cruise control, the plant is the car, and the system is the car and the cruise control. The system output is the car's speed, and the control itself is the engine's throttle position which determines how much power the engine delivers.
A primitive way to implement cruise control is simply to lock the throttle position when the driver engages cruise control. However, if the cruise control is engaged on a stretch of non-flat road, then the car will travel slower going uphill and faster when going downhill. This type of controller is called an open-loop controller because there is no feedback; no measurement of the system output is used to alter the control As a result, the controller cannot compensate for changes acting on the car, like a change in the slope of the road.
In a closed-loop control system, data from a sensor monitoring the car's speed enters a controller which continuously compares the quantity representing the speed with the reference quantity representing the desired speed. The difference, called the error, determines the throttle position. The result is to match the car's speed to the reference speed. Now, when the car goes uphill, the difference between the input and the reference continuously determines the throttle position. As the sensed speed drops below the reference, the difference increases, the throttle opens, and engine power increases, speeding up the vehicle. In this way, the controller dynamically counteracts changes to the car's speed. The central idea of these control systems is the feedback loop, the controller affects the system output, which in turn is measured and fed back to the controller.

Classical control theory

To overcome the limitations of the open-loop controller, control theory introduces feedback.
A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs have an effect on the process outputs, which is measured with sensors and processed by the controller; the result is "fed back" as input to the process, closing the loop.
Closed-loop controllers have the following advantages over open-loop controllers:
In some systems, closed-loop and open-loop control are used simultaneously. In such systems, the open-loop control is termed feedforward and serves to further improve reference tracking performance.
A common closed-loop controller architecture is the PID controller.

Closed-loop transfer function

The output of the system y is fed back through a sensor measurement F to a comparison with the reference value r. The controller C then takes the error e between the reference and the output to change the inputs u to the system under control P. This is shown in the figure. This kind of controller is a closed-loop controller or feedback controller.
This is called a single-input-single-output control system; MIMO systems, with more than one input/output, are common. In such cases variables are represented through vectors instead of simple scalar values. For some distributed parameter systems the vectors may be infinite-dimensional.
If we assume the controller C, the plant P, and the sensor F are linear and time-invariant , P, and F, the systems above can be analysed using the Laplace transform on the variables. This gives the following relations:
Solving for Y in terms of R gives
The expression is referred to as the closed-loop transfer function of the system. The numerator is the forward gain from r to y, and the denominator is one plus the gain in going around the feedback loop, the so-called loop gain. If, i.e., it has a large norm with each value of s, and if, then Y is approximately equal to R and the output closely tracks the reference input.

PID feedback control

A proportional–integral–derivative controller is a control loop feedback mechanism control technique widely used in control systems.
A PID controller continuously calculates an error value as the difference between a desired setpoint and a measured process variable and applies a correction based on proportional, integral, and derivative terms. PID is an initialism for Proportional-Integral-Derivative, referring to the three terms operating on the error signal to produce a control signal.
The theoretical understanding and application dates from the 1920s, and they are implemented in nearly all analogue control systems; originally in mechanical controllers, and then using discrete electronics and later in industrial process computers.
The PID controller is probably the most-used feedback control design.
If u is the control signal sent to the system, y is the measured output and r is the desired output, and is the tracking error, a PID controller has the general form
The desired closed loop dynamics is obtained by adjusting the three parameters, and, often iteratively by "tuning" and without specific knowledge of a plant model. Stability can often be ensured using only the proportional term. The integral term permits the rejection of a step disturbance. The derivative term is used to provide damping or shaping of the response. PID controllers are the most well-established class of control systems: however, they cannot be used in several more complicated cases, especially if MIMO systems are considered.
Applying Laplace transformation results in the transformed PID controller equation
with the PID controller transfer function
As an example of tuning a PID controller in the closed-loop system, consider a 1st order plant given by
where and are some constants. The plant output is fed back through
where is also a constant. Now if we set,, and, we can express the PID controller transfer function in series form as
Plugging,, and into the closed-loop transfer function, we find that by setting
. With this tuning in this example, the system output follows the reference input exactly.
However, in practice, a pure differentiator is neither physically realizable nor desirable due to amplification of noise and resonant modes in the system. Therefore, a phase-lead compensator type approach or a differentiator with low-pass roll-off are used instead.

Linear and nonlinear control theory

The field of control theory can be divided into two branches:
Mathematical techniques for analyzing and designing control systems fall into two different categories:
In contrast to the frequency domain analysis of the classical control theory, modern control theory utilizes the time-domain state space representation, a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs, outputs, and states, the variables are expressed as vectors and the differential and algebraic equations are written in matrix form. The state space representation provides a convenient and compact way to model and analyze systems with multiple inputs and outputs. With inputs and outputs, we would otherwise have to write down Laplace transforms to encode all the information about a system. Unlike the frequency domain approach, the use of the state-space representation is not limited to systems with linear components and zero initial conditions. "State space" refers to the space whose axes are the state variables. The state of the system can be represented as a point within that space.

System interfacing - SISO & MIMO

Control systems can be divided into different categories depending on the number of inputs and outputs.

Stability

The stability of a general dynamical system with no input can be described with Lyapunov stability criteria.
For simplicity, the following descriptions focus on continuous-time and discrete-time linear systems.
Mathematically, this means that for a causal linear system to be stable all of the poles of its transfer function must have negative-real values, i.e. the real part of each pole must be less than zero. Practically speaking, stability requires that the transfer function complex poles reside
The difference between the two cases is simply due to the traditional method of plotting continuous time versus discrete time transfer functions. The continuous Laplace transform is in Cartesian coordinates where the axis is the real axis and the discrete Z-transform is in circular coordinates where the axis is the real axis.
When the appropriate conditions above are satisfied a system is said to be asymptotically stable; the variables of an asymptotically stable control system always decrease from their initial value and do not show permanent oscillations. Permanent oscillations occur when a pole has a real part exactly equal to zero or a modulus equal to one. If a simply stable system response neither decays nor grows over time, and has no oscillations, it is marginally stable; in this case the system transfer function has non-repeated poles at the complex plane origin. Oscillations are present when poles with real part equal to zero have an imaginary part not equal to zero.
If a system in question has an impulse response of
then the Z-transform, is given by
which has a pole in . This system is BIBO stable since the pole is inside the unit circle.
However, if the impulse response was
then the Z-transform is
which has a pole at and is not BIBO stable since the pole has a modulus strictly greater than one.
Numerous tools exist for the analysis of the poles of a system. These include graphical systems like the root locus, Bode plots or the Nyquist plots.
Mechanical changes can make equipment more stable. Sailors add ballast to improve the stability of ships. Cruise ships use antiroll fins that extend transversely from the side of the ship for perhaps 30 feet and are continuously rotated about their axes to develop forces that oppose the roll.

Controllability and observability

and observability are main issues in the analysis of a system before deciding the best control strategy to be applied, or whether it is even possible to control or stabilize the system. Controllability is related to the possibility of forcing the system into a particular state by using an appropriate control signal. If a state is not controllable, then no signal will ever be able to control the state. If a state is not controllable, but its dynamics are stable, then the state is termed stabilizable. Observability instead is related to the possibility of observing, through output measurements, the state of a system. If a state is not observable, the controller will never be able to determine the behavior of an unobservable state and hence cannot use it to stabilize the system. However, similar to the stabilizability condition above, if a state cannot be observed it might still be detectable.
From a geometrical point of view, looking at the states of each variable of the system to be controlled, every "bad" state of these variables must be controllable and observable to ensure a good behavior in the closed-loop system. That is, if one of the eigenvalues of the system is not both controllable and observable, this part of the dynamics will remain untouched in the closed-loop system. If such an eigenvalue is not stable, the dynamics of this eigenvalue will be present in the closed-loop system which therefore will be unstable. Unobservable poles are not present in the transfer function realization of a state-space representation, which is why sometimes the latter is preferred in dynamical systems analysis.
Solutions to problems of an uncontrollable or unobservable system include adding actuators and sensors.

Control specification

Several different control strategies have been devised in the past years. These vary from extremely general ones, to others devoted to very particular classes of systems.
A control problem can have several specifications. Stability, of course, is always present. The controller must ensure that the closed-loop system is stable, regardless of the open-loop stability. A poor choice of controller can even worsen the stability of the open-loop system, which must normally be avoided. Sometimes it would be desired to obtain particular dynamics in the closed loop: i.e. that the poles have, where is a fixed value strictly greater than zero, instead of simply asking that.
Another typical specification is the rejection of a step disturbance; including an integrator in the open-loop chain easily achieves this. Other classes of disturbances need different types of sub-systems to be included.
Other "classical" control theory specifications regard the time-response of the closed-loop system. These include the rise time, peak overshoot and others. Frequency domain specifications are usually related to robustness.
Modern performance assessments use some variation of integrated tracking error.

Model identification and robustness

A control system must always have some robustness property. A robust controller is such that its properties do not change much if applied to a system slightly different from the mathematical one used for its synthesis. This requirement is important, as no real physical system truly behaves like the series of differential equations used to represent it mathematically. Typically a simpler mathematical model is chosen in order to simplify calculations, otherwise, the true system dynamics can be so complicated that a complete model is impossible.
;System identification
The process of determining the equations that govern the model's dynamics is called system identification. This can be done off-line: for example, executing a series of measures from which to calculate an approximated mathematical model, typically its transfer function or matrix. Such identification from the output, however, cannot take account of unobservable dynamics. Sometimes the model is built directly starting from known physical equations, for example, in the case of a system we know that. Even assuming that a "complete" model is used in designing the controller, all the parameters included in these equations are never known with absolute precision; the control system will have to behave correctly even when connected to a physical system with true parameter values away from nominal.
Some advanced control techniques include an "on-line" identification process. The parameters of the model are calculated while the controller itself is running. In this way, if a drastic variation of the parameters ensues, for example, if the robot's arm releases a weight, the controller will adjust itself consequently in order to ensure the correct performance.
;Analysis
Analysis of the robustness of a SISO control system can be performed in the frequency domain, considering the system's transfer function and using Nyquist and Bode diagrams. Topics include gain and phase margin and amplitude margin. For MIMO and, in general, more complicated control systems, one must consider the theoretical results devised for each control technique. I.e., if particular robustness qualities are needed, the engineer must shift his attention to a control technique by including them in its properties.
;Constraints
A particular robustness issue is the requirement for a control system to perform properly in the presence of input and state constraints. In the physical world every signal is limited. It could happen that a controller will send control signals that cannot be followed by the physical system, for example, trying to rotate a valve at excessive speed. This can produce undesired behavior of the closed-loop system, or even damage or break actuators or other subsystems. Specific control techniques are available to solve the problem: model predictive control, and anti-wind up systems. The latter consists of an additional control block that ensures that the control signal never exceeds a given threshold.

System classifications

Linear systems control

For MIMO systems, pole placement can be performed mathematically using a state space representation of the open-loop system and calculating a feedback matrix assigning poles in the desired positions. In complicated systems this can require computer-assisted calculation capabilities, and cannot always ensure robustness. Furthermore, all system states are not in general measured and so observers must be included and incorporated in pole placement design.

Nonlinear systems control

Processes in industries like robotics and the aerospace industry typically have strong nonlinear dynamics. In control theory it is sometimes possible to linearize such classes of systems and apply linear techniques, but in many cases it can be necessary to devise from scratch theories permitting control of nonlinear systems. These, e.g., feedback linearization, backstepping, sliding mode control, trajectory linearization control normally take advantage of results based on Lyapunov's theory. Differential geometry has been widely used as a tool for generalizing well-known linear control concepts to the non-linear case, as well as showing the subtleties that make it a more challenging problem. Control theory has also been used to decipher the neural mechanism that directs cognitive states.

Decentralized systems control

When the system is controlled by multiple controllers, the problem is one of decentralized control. Decentralization is helpful in many ways, for instance, it helps control systems to operate over a larger geographical area. The agents in decentralized control systems can interact using communication channels and coordinate their actions.

Deterministic and stochastic systems control

A stochastic control problem is one in which the evolution of the state variables is subjected to random shocks from outside the system. A deterministic control problem is not subject to external random shocks.

Main control strategies

Every control system must guarantee first the stability of the closed-loop behavior. For linear systems, this can be obtained by directly placing the poles. Non-linear control systems use specific theories to ensure stability without regard to the inner dynamics of the system. The possibility to fulfill different specifications varies from the model considered and the control strategy chosen.
;List of the main control techniques
Many active and historical figures made significant contribution to control theory including