Complex adaptive system


A complex adaptive system is a system in which a perfect understanding of the individual parts does not automatically convey a perfect understanding of the whole system's behavior. In complex adaptive systems, the whole is more complex than its parts, and more complicated and meaningful than the aggregate of its parts. The study of complex adaptive systems, a subset of nonlinear dynamical systems, is highly interdisciplinary and blends insights from the natural and social sciences to develop system-level models and insights that allow for heterogeneous agents, phase transition, and emergent behavior.
They are complex in that they are dynamic networks of interactions, and their relationships are not aggregations of the individual static entities, i.e., the behavior of the ensemble is not predicted by the behavior of the components. They are adaptive in that the individual and collective behavior mutate and self-organize corresponding to the change-initiating micro-event or collection of events. They are a "complex macroscopic collection" of relatively "similar and partially connected micro-structures" formed in order to adapt to the changing environment and increase their survivability as a macro-structure. The Complex Adaptive Systems approach builds on replicator dynamics.

Overview

The term complex adaptive systems, or complexity science, is often used to describe the loosely organized academic field that has grown up around the study of such systems. Complexity science is not a single theory—it encompasses more than one theoretical framework and is highly interdisciplinary, seeking the answers to some fundamental questions about living, adaptable, changeable systems. Complex adaptive systems may adopt hard or softer approaches. Hard theories use formal language that is precise, tend to see agents as having tangible properties, and usually see objects in a behavioral system that can be manipulated in some way. Softer theories use natural language and narratives that may be imprecise, and agents are subjects having both tangible and intangible properties. Examples of hard complexity theories include Complex Adaptive Systems and Viability Theory, and a class of softer theory is Viable System Theory. Many of the propositional consideration made in hard theory are also of relevance to softer theory. From here on, interest will now center on CAS.
The study of CAS focuses on complex, emergent and macroscopic properties of the system. John H. Holland said that CAS "are systems that have a large numbers of components, often called agents, that interact and adapt or learn".
Typical examples of complex adaptive systems include: climate; cities; firms; markets; governments; industries; ecosystems; social networks; power grids; animal swarms; traffic flows; social insect colonies; the brain and the immune system; and the cell and the developing embryo. Human social group-based endeavors, such as political parties, communities, geopolitical organizations, war, and terrorist networks are also considered CAS. The internet and cyberspace—composed, collaborated, and managed by a complex mix of human–computer interactions, is also regarded as a complex adaptive system. CAS can be hierarchical, but more often exhibit aspects of "self-organization".

General properties

What distinguishes a CAS from a pure multi-agent system is the focus on top-level properties and features like self-similarity, complexity, emergence and self-organization. A MAS is defined as a system composed of multiple interacting agents; whereas in CAS, the agents as well as the system are adaptive and the system is self-similar. A CAS is a complex, self-similar collectivity of interacting, adaptive agents. Complex Adaptive Systems are characterized by a high degree of adaptive capacity, giving them resilience in the face of.
Other important properties are adaptation, communication, cooperation, specialization, spatial and temporal organization, and reproduction. They can be found on all levels: cells specialize, adapt and reproduce themselves just like larger organisms do. Communication and cooperation take place on all levels, from the agent to the system level. The forces driving co-operation between agents in such a system, in some cases, can be analyzed with game theory.

Characteristics

Some of the most important characteristics of complex systems are:
Robert Axelrod & Michael D. Cohen identify a series of key terms from a modeling perspective:
Turner and Baker synthesized the characteristics of complex adaptive systems from the literature and tested these characteristics in the context of creativity and innovation. Each of these eight characteristics had been shown to be present in the creativity and innovative processes:
CAS are occasionally modeled by means of agent-based models and complex network-based models. Agent-based models are developed by means of various methods and tools primarily by means of first identifying the different agents inside the model. Another method of developing models for CAS involves developing complex network models by means of using interaction data of various CAS components.
In 2013 SpringerOpen/BioMed Central has launched an online open-access journal on the topic of complex adaptive systems modeling.

Evolution of complexity

Living organisms are complex adaptive systems. Although complexity is hard to quantify in biology, evolution has produced some remarkably complex organisms. This observation has led to the common misconception of evolution being progressive and leading towards what are viewed as "higher organisms".
If this were generally true, evolution would possess an active trend towards complexity. As shown below, in this type of process the value of the most common amount of complexity would increase over time. Indeed, some artificial life simulations have suggested that the generation of CAS is an inescapable feature of evolution.
However, the idea of a general trend towards complexity in evolution can also be explained through a passive process. This involves an increase in variance but the most common value, the mode, does not change. Thus, the maximum level of complexity increases over time, but only as an indirect product of there being more organisms in total. This type of random process is also called a bounded random walk.
In this hypothesis, the apparent trend towards more complex organisms is an illusion resulting from concentrating on the small number of large, very complex organisms that inhabit the right-hand tail of the complexity distribution and ignoring simpler and much more common organisms. This passive model emphasizes that the overwhelming majority of species are microscopic prokaryotes, which comprise about half the world's biomass and constitute the vast majority of Earth's biodiversity. Therefore, simple life remains dominant on Earth, and complex life appears more diverse only because of sampling bias.
If there is a lack of an overall trend towards complexity in biology, this would not preclude the existence of forces driving systems towards complexity in a subset of cases. These minor trends would be balanced by other evolutionary pressures that drive systems towards less complex states.

Literature