Colony (biology)


In biology, a colony is composed of two or more conspecific individuals living in close association with, or connected to, one another. This association is usually for mutual benefit such as stronger defense or the ability to attack bigger prey. It is a cluster of identical cells on the surface of a solid medium, usually derived from a single parent cell, as in bacterial colony. In contrast, solitary organisms are ones in which all individuals live independently and have all of the functions needed to survive and reproduce.
Colonies, in the context of development, may be composed of two or more unitary organisms or be modular organisms. Unitary organisms have determinate development from zygote to adult form and individuals or groups of individuals are visually distinct. Modular organisms have indeterminate growth forms through repeated iteration of genetically identical modules, and it can be difficult to distinguish between the colony as a whole and the modules within. In the latter case, modules may have specific functions within the colony.
Some organisms are primarily independent and form facultative colonies in reply to environmental conditions while others must live in a colony to survive. For example, some carpenter bees will form colonies when a dominant hierarchy is formed between two or more nest foundresses, while corals are animals that are physically connected by living tissue that contains a shared gastrovascular cavity.

Colony types

Social colonies

and multicellular unitary organisms may aggregate to form colonies. For example,
Modular organisms are those in which a genet asexually reproduces to form genetically identical clones called ramets.
A clonal colony is when the ramets of a genet live in close proximity or are physically connected. Ramets may have all of the functions needed to survive on their own or be interdependent on other ramets. For example, some sea anemones go through the process of pedal laceration in which a genetically identical individual is asexually produced from tissue broken off from the anemone's pedal disc. In plants, clonal colonies are created through the propagation of genetically identical trees by stolons or rhizomes.
Colonial organisms are clonal colonies composed of many physically connected, interdependent individuals. The subunits of colonial organisms can be unicellular, as in the alga Volvox, or multicellular, as in the phylum Bryozoa. The former type may have been the first step toward multicellular organisms. Individuals within a multicellular colonial organism may be called ramets, modules, or zooids. Structural and functional variation, when present, designates ramet responsibilities such as feeding, reproduction, and defense. To that end, being physically connected allows the colonial organism to distribute nutrients and energy obtained by feeding zooids throughout the colony. An example of colonial organisms that is well-known are hydrozoans, like Portuguese man o' wars.

Microbial colonies

A microbial colony is defined as a visible cluster of microorganisms growing on the surface of or within a solid medium, presumably cultured from a single cell. Because the colony is clonal, with all organisms in it descending from a single ancestor, they are genetically identical, except for any mutations. Obtaining such genetically identical organisms can be useful; this is done by spreading organisms on a culture plate and starting a new stock from a single resulting colony.
A biofilm is a colony of microorganisms often comprising several species, with properties and capabilities greater than the aggregate of capabilities of the individual organisms.

Life history

Individuals in social colonies and modular organisms receive benefit to such a lifestyle. For example, it may be easier to seek out food, defend a nesting site, or increase competitive ability against other species. Modular organisms' ability to reproduce asexually in addition to sexually allows them unique benefits that social colonies do not have.
The energy required for sexual reproduction varies based on the frequency and length of reproductive activity, number and size of offspring, and parental care. While solitary individuals bear all of those energy costs, individuals in some social colonies share a portion of those costs.
Modular organisms save energy by using asexual reproduction during their life. Energy reserved in this way allows them to put more energy towards colony growth, regenerating lost modules, or response to environmental conditions.