Cold


Cold is the presence of low temperature, especially in the atmosphere. In common usage, cold is often a subjective perception. A lower bound to temperature is absolute zero, defined as 0.00K on the Kelvin scale, an absolute thermodynamic temperature scale. This corresponds to on the Celsius scale, on the Fahrenheit scale, and on the Rankine scale.
Since temperature relates to the thermal energy held by an object or a sample of matter, which is the kinetic energy of the random motion of the particle constituents of matter, an object will have less thermal energy when it is colder and more when it is hotter. If it were possible to cool a system to absolute zero, all motion of the particles in a sample of matter would cease and they would be at complete rest in this classical sense. The object would be described as having zero thermal energy. Microscopically in the description of quantum mechanics, however, matter still has zero-point energy even at absolute zero, because of the uncertainty principle.

Cooling

Cooling refers to the process of becoming cold, or lowering in temperature. This could be accomplished by removing heat from a system, or exposing the system to an environment with a lower temperature.
Coolants are fluids used to cool objects, prevent freezing and prevent erosion in machines.
Air cooling is the process of cooling an object by exposing it to air. This will only work if the air is at a lower temperature than the object, and the process can be enhanced by increasing the surface area, increasing the coolant flow rate, or decreasing the mass of the object.
Another common method of cooling is exposing an object to ice, dry ice, or liquid nitrogen. This works by conduction; the heat is transferred from the relatively warm object to the relatively cold coolant.
Laser cooling and magnetic evaporative cooling are techniques used to reach very low temperatures.

History

Early history

In ancient times, ice was not adopted for food preservation but used to cool wine which the Romans had also done. According to Pliny, Emperor Nero invented the ice bucket to chill wines instead of adding it to wine to make it cold as it would dilute it.
Some time around 1700 BC Zimri-Lim, king of Mari Kingdom in northwest Iraq had created an "icehouse" called bit shurpin at a location close to his capital city on the banks of the Euphrates. In the 7th century BC the Chinese had used icehouses to preserve vegetables and fruits. During the Tang dynastic rule in China a document refers to the practice of using ice that was in vogue during the Eastern Chou Dynasty by 94 workmen employed for "Ice-Service" to freeze everything from wine to dead bodies.
Shachtman says that in the 4th century AD, the brother of the Japanese emperor Nintoku gave him a gift of ice from a mountain. The Emperor was so happy with the gift that he named the first of June as the "Day of Ice" and ceremoniously gave blocks of ice to his officials.
Even in ancient times, Shachtman says, in Egypt and India, night cooling by evaporation of water and heat radiation, and the ability of salts to lower the freezing temperature of water was practiced. The ancient people of Rome and Greece were aware that boiled water cooled quicker than the ordinary water; the reason for this is that with boiling of water carbon dioxide and other gases, which are deterrents to cooling, are removed; but this fact was not known till the 17th century.

From the 17th century

According to Tom Shachtman, until the early 17th century cold was considered a mystery without source, which was linked with death; it attempt towas inexplicable and too fearsome to investigate. Refrigeration by artificial means was an abhorrent idea as the thinking was for natural refrigeration though a lot of consumable goods perished without any attempt to refrigerate them.
Shachtman says that Cornelis Jacobszoon Drebbel was appointed in 1608 by King James I and VI, who believed in magicians performing magical tricks such as producing thunder lightning, lions, birds, trembling leaves and so forth. In 1620 he gave a demonstration in Westminster Abbey to the king and his courtiers on the power of cold. On a summer day, Shachtman says, Drebbel had created a chill in the hall of the Abbey, which made the king shiver and run out of the hall with his entourage. This was an incredible spectacle, says Shachtman. Several years before, Giambattista della Porta had demonstrated at the Abbey "ice fantasy gardens, intricate ice sculptures" and also iced drinks for banquets in Florence. The only reference to the artificial freezing created by Drebbel was by Francis Bacon. His demonstration was not taken seriously as it was considered as one of his magic tricks, as there was no practical application then. Drebbel had not revealed his secrets.
Shachtman says that Lord Chancellor Bacon, an advocate of experimental science, had tried in Navum Organum, published in the late 1620s, to explain the artificial freezing experiment at Westminster Abbey, though he was not present during the demonstration, as "Nitre is very cold, and hence nitre or salt when added to snow or ice intensifies the cold of the latter, the nitre by adding to its own cold, but the salt by supplying activity to the cold snow." This explanation on the cold inducing aspects of nitre and salt was tried then by many scientists.
Shachtman says it was the lack of scientific knowledge in physics and chemistry that had held back progress in the beneficial use of ice until a drastic change in religious opinions in the 17th century. The intellectual barrier was broken by Francis Bacon and Robert Boyle who followed him in this quest for knowledge of cold. Boyle did extensive experimentation during the 17th century in the discipline of cold, and his research on pressure and volume was the forerunner of research in the field of cold during the 19th century. He explained his approach as "Bacon's identification of heat and cold as the right and left hands of nature". Boyle also refuted some of the theories mooted by Aristotle on cold by experimenting on transmission of cold from one material to the other. He proved that water was not the only source of cold but gold, silver and crystal, which had no water content, could also change to severe cold condition.

19th century

In the United States from about 1850 till end of 19th century export of ice was second only to cotton. The first ice box was developed by Thomas Moore, a farmer from Maryland in 1810 to carry butter in an oval shaped wooden tub. The tub was provided with a metal lining in its interior and surrounded by a packing of ice. A rabbit skin was used as insulation. Moore also developed an ice box for domestic use with the container built over a space of which was filled with ice. In 1825, ice harvesting by use of a horse drawn ice cutting device was invented by Nathaniel J. Wyeth. The cut blocks of uniform size ice was a cheap method of food preservation widely practiced in the United States. Also developed in 1855 was a steam powered device to haul 600 tons of ice per hour. More innovations ensued. Devices using compressed air as a refrigerants were invented.

20th century

es were in widespread use from the mid-19th century to the 1930s, when the refrigerator was introduced into the home. Most municipally consumed ice was harvested in winter from snow-packed areas or frozen lakes, stored in ice houses, and delivered domestically as iceboxes became more common.
In 1913, refrigerators for home use were invented. In 1923 Frigidaire introduced the first self-contained unit. The introduction of Freon in the 1920s expanded the refrigerator market during the 1930s. Home freezers as separate compartments were introduced in 1940. Frozen foods, previously a luxury item, became commonplace.

Physiological effects

Cold has numerous physiological and pathological effects on the human body, as well as on other organisms. Cold environments may promote certain psychological traits, as well as having direct effects on the ability to move. Shivering is one of the first physiological responses to cold. Extreme cold temperatures may lead to frostbite, sepsis, and hypothermia, which in turn may result in death.

Notable cold locations and objects