Cognitive radio


A cognitive radio is a radio that can be programmed and configured dynamically to use the best wireless channels in its vicinity to avoid user interference and congestion. Such a radio automatically detects available channels in wireless spectrum, then accordingly changes its transmission or reception parameters to allow more concurrent wireless communications in a given spectrum band at one location. This process is a form of dynamic spectrum management.

Description

In response to the operator's commands, the cognitive engine is capable of configuring radio-system parameters. These parameters include "waveform, protocol, operating frequency, and networking". This functions as an autonomous unit in the communications environment, exchanging information about the environment with the networks it accesses and other cognitive radios. A CR "monitors its own performance continuously", in addition to "reading the radio's outputs"; it then uses this information to "determine the RF environment, channel conditions, link performance, etc.", and adjusts the "radio's settings to deliver the required quality of service subject to an appropriate combination of user requirements, operational limitations, and regulatory constraints".
Some "smart radio" proposals combine wireless mesh network—dynamically changing the path messages take between two given nodes using cooperative diversity; cognitive radio—dynamically changing the frequency band used by messages between two consecutive nodes on the path; and software-defined radio—dynamically changing the protocol used by message between two consecutive nodes.
J. H. Snider, Lawrence Lessig, David Weinberger, and others say that low power "smart" radio is inherently superior to standard broadcast radio.

History

The concept of cognitive radio was first proposed by Joseph Mitola III in a seminar at KTH in 1998 and published in an article by Mitola and Gerald Q. Maguire, Jr. in 1999. It was a novel approach in wireless communications, which Mitola later described as:
The point in which wireless personal digital assistants and the related networks are sufficiently computationally intelligent about radio resources and related computer-to-computer communications to detect user communications needs as a function of use context, and to provide radio resources and wireless services most appropriate to those needs.

Cognitive radio is considered as a goal towards which a software-defined radio platform should evolve: a fully reconfigurable wireless transceiver which automatically adapts its communication parameters to network and user demands.
Traditional regulatory structures have been built for an analog model and are not optimized for cognitive radio. Regulatory bodies in the world as well as different independent measurement campaigns found that most radio frequency spectrum was inefficiently utilized. Cellular network bands are overloaded in most parts of the world, but other frequency bands are insufficiently utilized. Independent studies performed in some countries confirmed that observation, and concluded that spectrum utilization depends on time and place. Moreover, fixed spectrum allocation prevents rarely used frequencies from being used, even when any unlicensed users would not cause noticeable interference to the assigned service. Regulatory bodies in the world have been considering whether to allow unlicensed users in licensed bands if they would not cause any interference to licensed users. These initiatives have focused cognitive-radio research on dynamic spectrum access.
The first cognitive radio wireless regional area network standard, IEEE 802.22, was developed by IEEE 802 LAN/MAN Standard Committee and published in 2011. This standard uses geolocation and spectrum sensing for spectral awareness. Geolocation combines with a database of licensed transmitters in the area to identify available channels for use by the cognitive radio network. Spectrum sensing observes the spectrum and identifies occupied channels. IEEE 802.22 was designed to utilize the unused frequencies or fragments of time in a location. This white space is unused television channels in the geolocated areas. However, cognitive radio cannot occupy the same unused space all the time. As spectrum availability changes, the network adapts to prevent interference with licensed transmissions.

Terminology

Depending on transmission and reception parameters, there are two main types of cognitive radio:
Other types are dependent on parts of the spectrum available for cognitive radio:
Although cognitive radio was initially thought of as a software-defined radio extension, most research work focuses on spectrum-sensing cognitive radio. The chief problem in spectrum-sensing cognitive radio is designing high-quality spectrum-sensing devices and algorithms for exchanging spectrum-sensing data between nodes. It has been shown that a simple energy detector cannot guarantee the accurate detection of signal presence, calling for more sophisticated spectrum sensing techniques and requiring information about spectrum sensing to be regularly exchanged between nodes. Increasing the number of cooperating sensing nodes decreases the probability of false detection.
Filling free RF bands adaptively, using OFDMA, is a possible approach. Timo A. Weiss and Friedrich K. Jondral of the University of Karlsruhe proposed a spectrum pooling system, in which free bands were immediately filled by OFDMA subbands. Applications of spectrum-sensing cognitive radio include emergency-network and WLAN higher throughput and transmission-distance extensions. The evolution of cognitive radio toward cognitive networks is underway; the concept of cognitive networks is to intelligently organize a network of cognitive radios.

Functions

The main functions of cognitive radios are:
The practical implementation of spectrum-management functions is a complex and multifaceted issue, since it must address a variety of technical and legal requirements. An example of the former is choosing an appropriate sensing threshold to detect other users, while the latter is exemplified by the need to meet the rules and regulations set out for radio spectrum access in international and national legislation.

Intelligent antenna (IA)

An intelligent antenna is an antenna technology that uses spatial beam-formation and spatial coding to cancel interference; however, applications are emerging for extension to intelligent multiple or cooperative-antenna arrays for application to complex communication environments. Cognitive radio, by comparison, allows user terminals to sense whether a portion of the spectrum is being used in order to share spectrum with neighbor users. The following table compares the two:
PointCognitive radio Intelligent antenna
Principal goalOpen spectrum sharingAmbient spatial reuse
Interference processingAvoidance by spectrum sensingCancellation by spatial precoding/post-coding
Key costSpectrum sensing and multi-band RFMultiple- or cooperative-antenna arrays
Challenging algorithmSpectrum management techIntelligent spatial beamforming/coding tech
Applied techniquesCognitive software radioGeneralized dirty paper coding and Wyner-Ziv coding
Basement approachOrthogonal modulationCellular based smaller cell
Competitive technologyUltra-wideband for greater band utilizationMulti-sectoring for higher spatial reuse
SummaryCognitive spectrum-sharing technologyIntelligent spectrum reuse technology

Note that both techniques can be combined as illustrated in many contemporary transmission scenarios.
Cooperative MIMO combines both techniques.

Applications

Cognitive Radio can sense its environment and, without the intervention of the user, can adapt to the user's communications needs while conforming to FCC rules in the United States. In theory, the amount of spectrum is infinite; practically, for propagation and other reasons it is finite because of the desirability of certain spectrum portions. Assigned spectrum is far from being fully utilized, and efficient spectrum use is a growing concern; CR offers a solution to this problem. A CR can intelligently detect whether any portion of the spectrum is in use, and can temporarily use it without interfering with the transmissions of other users. According to Bruce Fette, "Some of the radio's other cognitive abilities include determining its location, sensing spectrum use by neighboring devices, changing frequency, adjusting output power or even altering transmission parameters and characteristics. All of these capabilities, and others yet to be realized, will provide wireless spectrum users with the ability to adapt to real-time spectrum conditions, offering regulators, licenses and the general public flexible, efficient and comprehensive use of the spectrum".
Examples of applications include:
At present, modeling & simulation is the only paradigm which allows the simulation of complex behavior in a given environment's cognitive radio networks. Network simulators like OPNET, NetSim, MATLAB and ns2 can be used to simulate a cognitive radio network. CogNS is an open-source NS2-based simulation framework for cognitive radio networks. Areas of research using network simulators include:
  1. Spectrum sensing & incumbent detection
  2. Spectrum allocation
  3. Measurement and/or modeling of spectrum usage
  4. Efficiency of spectrum utilization
Network Simulator 3 is also a viable option for simulating CR. ns-3 can be also used to emulate and experiment CR networks with the aid from commodity hardware like Atheros WiFi devices.

Future plans

The success of the unlicensed band in accommodating a range of wireless devices and services has led the FCC to consider opening further bands for unlicensed use. In contrast, the licensed bands are underutilized due to static frequency allocation. Realizing that CR technology has the potential to exploit the inefficiently utilized licensed bands without causing interference to incumbent users, the FCC released a Notice of Proposed Rule Making which would allow unlicensed radios to operate in the TV-broadcast bands. The IEEE 802.22 working group, formed in November 2004, is tasked with defining the air-interface standard for wireless regional area networks for the operation of unlicensed devices in the spectrum allocated to TV service. To comply with later FCC regulations on unlicensed utilization of TV spectrum, the IEEE 802.22 has defined interfaces to the mandatory TV White Space Database in order to avoid interference to incumbent services.