Clock of the Long Now
The Clock of the Long Now, also called the 10,000-year clock, is a mechanical clock under construction that is designed to keep time for 10,000 years. It is being built by the Long Now Foundation. A two-meter prototype is on display at the Science Museum in London., two more prototypes are on display at The Long Now Museum & Store at Fort Mason Center in San Francisco.
The project was conceived by Danny Hillis in 1986. The first prototype of the clock began working on December 31, 1999, just in time to display the transition to the year 2000. At midnight on New Year's Eve, the date indicator changed from 01999 to 02000, and the chime struck twice.
The manufacture and site construction of the first full-scale prototype clock is being funded by Jeff Bezos's Bezos Expeditions, with $42 million, and is on land which Bezos owns in Texas.
Purpose
In the words of Stewart Brand, a founding board member of the foundation, "Such a clock, if sufficiently impressive and well-engineered, would embody deep time for people. It should be charismatic to visit, interesting to think about, and famous enough to become iconic in the public discourse. Ideally, it would do for thinking about time what the photographs of Earth from space have done for thinking about the environment. Such icons reframe the way people think."Design
The basic design principles and requirements for the clock are:- Longevity: The clock should be accurate even after 10,000 years, and must not contain valuable parts that might be looted.
- Maintainability: Future generations should be able to keep the clock working, if necessary, with nothing more advanced than Bronze Age tools and materials.
- Transparency: The clock should be understandable without stopping or disassembling it; no functionality should be opaque.
- Evolvability: It should be possible to improve the clock over time.
- Scalability: To ensure that the final large clock will work properly, smaller prototypes must be built and tested.
Power considerations
Many options were considered for the power source of the clock, but most were rejected due to their inability to meet the requirements. For example, nuclear power and solar power systems would violate the principles of transparency and longevity. In the end, Hillis decided to require regular human winding of a falling weight design for updating the clock face because the clock design already assumes regular human maintenance.However the clock is designed to keep time even when not being wound: "If there is no attention for long periods of time the Clock uses the energy captured by changes in the temperature between day and night on the mountain top above to power its time-keeping apparatus."
Timing considerations
The timing mechanism for such a long lasting clock needs to be reliable and robust as well as accurate. The options considered but rejected as sources of timing for the clock included:Self-contained clocks
Most of these methods are inaccurate, but are reliable. Other methods are accurate but opaque.- gravity pendulum
- torsion pendulum
- balance wheel
- water flow
- solid material flow
- wear and corrosion
- rolling balls
- diffusion
- tuning fork
- pressure chamber cycle
- inertial governor
- atomic oscillator
- piezoelectric crystal oscillator
- atomic decay
External events that the clock could track or be adjusted by
- daily temperature cycle
- seasonal temperature cycle
- tidal forces
- Earth's rotating inertial frame
- stellar alignment
- solar alignment
- tectonic motion
- orbital dynamics
- vandalism
- civil disorder
- civil war
- nuclear war
- impact event
In the current design, a slow mechanical oscillator, based on a torsional pendulum, keeps time inaccurately, but reliably. At noon the light from the Sun, a timer that is accurate but unreliable, is concentrated on a segment of metal through a lens. The metal buckles and the buckling force resets the clock to noon. The combination can, in principle, provide both reliability and long-term accuracy.
Displaying the time and date
Many of the usual units displayed on clocks, such as hours and calendar dates, may have little meaning after 10,000 years. However, every human culture counts days, months, and years, all of which are based on lunar and solar cycles. There are also longer natural cycles, such as the 25,765-year precession of Earth's axis. On the other hand, the clock is a product of our time, and it seems appropriate to pay homage to our current arbitrary systems of time measurement. In the end, it seemed best to display both the natural cycles and some of the current cultural cycles.The center of the clock will show a star field, indicating both the sidereal day and the precession of the zodiac. Around this will be a display showing the positions of the Sun and the Moon in the sky, as well as the phase and angle of the Moon. Outside this will be the ephemeral dial, showing the year according to our current Gregorian calendar system. This will be a five-digit display, indicating the current year in a format like "02000" instead of the more usual "2000". Hillis and Brand plan, if they can, to add a mechanism whereby the power source generates only enough energy to keep track of time; if visitors want to see the time displayed, they would have to manually supply some energy themselves.
Time calculations
Options considered for the part of the clock that converts time source to display units include electronics, hydraulics, fluidics, and mechanics.A problem with using a conventional gear train is that gears necessarily require a ratio relationship between the timing source and the display. The required accuracy of the ratio increases with the amount of time to be measured.
Achieving such precise ratios with gears is possible, but awkward; similarly, gears degrade over time in accuracy and efficiency due to the deleterious effects of friction. Instead, the clock uses binary digital logic, implemented mechanically in a sequence of stacked binary adders. In effect, the conversion logic is a simple digital computer, implemented with mechanical wheels and levers instead of typical electronics. The computer has 32 bits of accuracy, with each bit represented by a mechanical lever or pin that can be in one of two positions. This binary logic can only keep track of elapsed time, like a stopwatch; to convert from elapsed to local solar time, a cam subtracts from the cam slider, which the adders move.
Another advantage of the digital computer over the gear train is that it is more evolvable. For instance, the ratio of day to years depends on Earth's rotation, which is slowing at a noticeable but not very predictable rate. This could be enough to, for example, throw the phase of the Moon off by a few days over 10,000 years. The digital scheme allows that conversion ratio to be adjusted, without stopping the clock, if the length of the day changes in an unexpected way.
Location
The Long Now Foundation has purchased the top of Mount Washington near Ely, Nevada, which is surrounded by Great Basin National Park, for the permanent storage of the full-sized clock, once it is constructed. It will be housed in a series of rooms in the white limestone cliffs, approximately up the Snake Range. The site's dryness, remoteness, and lack of economic value should protect the clock from corrosion, vandalism, and development. Hillis chose this area of Nevada in part because it is home to a number of dwarf bristlecone pines, which the Foundation notes are nearly 5,000 years old. The clock will be almost entirely underground, and only accessed by foot traffic from the east once complete.Before building the public clock in Nevada, the foundation is building a full-scale clock of similar design in a mountain near Van Horn, Texas. The test drilling for the underground construction at this site was started in 2009. The site is on property owned by Amazon.com founder Jeff Bezos, who is also funding its construction. The lessons learned in the construction of this first full-scale 10,000-year clock will inform the final design of the clock in Nevada.
Inspiration and support
The project is supported by the Long Now Foundation, which also supports a number of other very-long-term projects, including the Rosetta Project and the Long Bet Project.Neal Stephenson's novel Anathem was partly inspired by his involvement with the project, to which he contributed three pages of sketches and notes. The Long Now Foundation sells a soundtrack for the novel with profits going to the project.
Musician Brian Eno gave the Clock of the Long Now its name in an essay; he has collaborated with Hillis on the writing of music for the chimes for a future prototype.