Clean Sky


The Clean Sky Joint Undertaking is a public-private partnership between the European Commission and the European aeronautics industry that coordinates and funds research activities to deliver significantly quieter and more environmentally friendly aircraft. The CSJU manages the Clean Sky Programme and the Clean Sky 2 Programme, making it Europe’s foremost aeronautical research body.

Overview

Aeronautics is noted for its capacity to innovate and to change the lives of millions of people. Also, for the complexity of its hardware and systems, which means the research and development cycles in the industry are very long, typically between 20 and 30 years. The risk associated with the large-scale investment required to drive technological progress is very high. In parallel, the environmental impact of the industry currently accounts for 3% of global man-made carbon emissions and is set to increase substantially in the years to come, as modern societies demand better connection among people, countries and regions.
By coordinating the research activities of the industry, the CSJU develops new technologies that would otherwise be beyond the manageable risk of the private sector: it provides the necessary funding to develop and introduce innovations within timeframes that would otherwise be unachievable.
As such, the CSJU is intended to be the body that will be the main contributor in realising the Advisory Council for Aeronautics Research in Europe 2020 environmental goals for the industry. These goals are:
The CSJU Governing Board, made up of representatives from the industry and the Commission, identifies strategic areas where research and innovation are essential. ‘Calls for Proposals' are then launched depending on the evolving needs of the industry.
Small or medium-sized enterprises, industrial leaders, universities, and professional research organisations respond to the calls with detailed plans for research activities and an outline of the funding that they will require to develop their new technologies. To guarantee an efficient allocation of resources, the applications are evaluated by a panel of independent external experts who advise the CSJU on the proposals with the best potential. The winning proposals then receive funding and other support from the CSJU.
The initial Clean Sky Programme, which runs from 2008-2016, has a budget of €1.6 billion. Half of this was provided by the European Commission’s and the other half was provided by financial and in-kind contributions from the industry leaders.

Research areas

The strategic areas where research and innovation are essential are called Integrated Technology Demonstrators. There are six of them, each one co-led by two industry leaders that are committed for the full duration of the programme:

Green Regional Aircraft

Green Regional Aircraft : Co-led by Airbus and Alenia. This ITD focuses on small, low-weight aircraft.

Smart Fixed Wing Aircraft

Smart Fixed Wing Aircraft : Co-led by Airbus and SAAB. This ITD focuses on wing technologies and configurations covering large aircraft and business jets.

Green Rotorcraft

Green Rotorcraft : Co-led by AgustaWestland and Airbus Helicopters. This ITD focuses on innovative rotor blades, integration of diesel engine technology and advanced electrical systems for elimination of noxious hydraulic fluids.

Sustainable and Green Engines

Sustainable and Green Engines : Co-led by Rolls-Royce and Safran. This ITD focuses on novel configurations such as open rotors and intercoolers.

Systems for Green Operations

Systems for Green Operations : Co-led by Liebherr and Thales. This ITD focuses on electrical aircraft equipment, system architectures, thermal management and capabilities for greener trajectories.

Eco-Design

Eco-Design : Co-led by Dassault Aviation and Fraunhofer Gesellschaft. This ITD focuses on mitigating the environmental impact of the design, production, withdrawal, and recycling of aircraft by optimising material and energy use.
Complementing the six ITDs is the Technology Evaluator. Once the new technologies have been developed and integrated into a test model or aircraft, the TE assesses the environmental improvements by carrying out demonstration activities and test flights and comparing the results with aircraft that have not been equipped with the new technologies. The difference in fuel saved, noise emitted etc. is the extent of the success of the technology.

Achievements

An Open Rotor demonstration led by Safran was launched in 2008 within the program with 65 million euros funding over eight years : a demonstrator was assembled in 2015, and ground tested in May 2017 on its open-air test rig in Istres, aiming to reduce fuel consumption and associated CO2 emissions by 30% compared with current CFM56 turbofans.
The Breakthrough Laminar Aircraft Demonstrator in Europe is an Airbus project within the framework to flight-test experimental laminar-flow wing sections on an A340 from September 2017.
Other examples of hardware that have been developed with the support of Clean Sky include:
Following the success of the initial Clean Sky Programme, its successor, Clean Sky 2, was launched in 2014 as part of the Commission’s Horizon 2020 Research and Innovation Programme. Clean Sky 2 aims to be the main contributor to the Commission’s Flightpath 2050 goals set by ACARE, which are more ambitious than those of the initial Clean Sky Programme.
These goals are:
Clean Sky 2 will also contribute to maintaining global leadership in European aeronautics. As such, Clean Sky 2 will require a larger membership, a bigger budget, and research activity in a wider range of areas.

Ice protection

Within the programme, a passive ice protection system will be tested on an engine inlet and nacelle mockup in an icing wind tunnel at :de:Rail Tec Arsenal in Austria by early 2020, using capillary forces generated by vaporisation in a metallic porous "wick" in an evaporator to provide heat transfer with no moving parts to a condenser, like in space applications, reducing weight and energy requirements.

High-speed rotorcraft

Within Clean Sky 2, the EU funds two high-speed rotorcraft: the Airbus RACER compound helicopter and the Leonardo Next-Generation Civil Tiltrotor.

Hybrid-electric

In 2016, French ONERA, German DLR and Dutch TU Delft/NLR were contracted to evaluate 35 radical configurations to replace conventional airliner designs from 2035, meeting Airbus A320 requirements: 150 passengers, a Mach 0.78 cruise and of range.
TU Delft and NLR presented their distributed hybrid-electric propulsion study Under Novair project at the January 2019 AIAA SciTech conference, having selected three more likely configurations:
Assuming 500 Wh/kg battery packs, achievable but beyond automotive or industrial applications, propulsion mass skyrocketed to 600% for HS2 and 730% for HS3, driving all the other masses and ending up consuming 34% more energy for HS3 and 51% for HS2, while HS1 showed a 10% better energy consumption.

Clean Sky 3

To cut 80% of air transport’s CO2 emissions by 2050, Clean Sky 3 would need reverse planning: due to the life expectancy of aircraft, required technologies would have to enter service in 2030-35 and should be demonstrated in 2025-27. The 2021-27 EU budget should be voted on by the end of 2019 and detailed allocation in 2020, with the Horizon Europe research and innovation program maybe including Clean Sky 3 starting on January 1, 2021 at best.

Research areas