Cementite is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, brittle material, normally classified as a ceramic in its pure form, and is a frequently found and important constituent in ferrous metallurgy. While cementite is present in most steels and cast irons, it is produced as a raw material in the iron carbide process, which belongs to the family of alternative ironmaking technologies. The name cementite originated from the research of Floris Osmond and J. Werth, where the structure of solidified steel consists of a kind of cellular tissue in theory, with ferrite as the nucleus and Fe3C the envelope of the cells. The carbide therefore cemented the iron.
Metallurgy
In the iron–carbon system it is a common constituent because ferrite can contain at most 0.02wt% of uncombined carbon. Therefore, in carbon steels and cast irons that are slowly cooled, a portion of the carbon is in the form of cementite. Cementite forms directly from the melt in the case of white cast iron. In carbon steel, cementite precipitates from austenite as austenite transforms to ferrite on slow cooling, or from martensite during tempering. An intimate mixture with ferrite, the other product of austenite, forms a lamellar structure called pearlite. While cementite is thermodynamically unstable, eventually being converted to austenite and graphite at higher temperatures, it does not decompose on heating at temperatures below the eutectoid temperature on the metastable iron-carbon phase diagram.
Pure form
Cementite changes from ferromagnetic to paramagnetic at its Curie temperature of approximately 480 K. A natural iron carbide occurs in iron meteorites and is called cohenite after the German mineralogist Emil Cohen, who first described it. As carbon is one of the possible minor light alloy components of metallic planetary cores, the high-pressure/high-temperature properties of cementite as a simple proxy for cohenite are studied experimentally. The figure shows the compressional behaviour at room temperature.
Other iron carbides
There are other forms of metastable iron carbides that have been identified in tempered steel and in the industrial Fischer-Tropsch process. These include epsilon carbide, hexagonal close-packed Fe2-3C, precipitates in plain-carbon steels of carbon content > 0.2%, tempered at 100–200 °C. Non-stoichiometric ε-carbide dissolves above ~200 °C, where Hägg carbides and cementite begin to form. Hägg carbide, monoclinic Fe5C2, precipitates in hardened tool steels tempered at 200–300 °C. It has also been found naturally as the mineral Edscottite in the Wedderburn meteorite Characterization of different iron carbides is not at all a trivial task, and often X-ray diffraction is complemented by Mössbauer spectroscopy.