In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ringR of subsets of a given set Ω can be extended to a measure on the σ-algebra generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.
Semi-ring and ring
Definitions
For a given set, we may define a semi-ring as a subset of, the power set of, which has the following properties:
The first property can be replaced with since. With the same notation, we define a ring as a subset of the power set of which has the following properties:
For all, we have
For all, we have .
Thus, any ring on is also a semi-ring. Sometimes, the following constraint is added in the measure theory context:
A field of sets is a ring that also contains as one of its elements.
Properties
Arbitrary intersections of rings on Ω are still rings on Ω.
If A is a non-empty subset of, then we define the ring generated by A as the intersection of all rings containing A. It is straightforward to see that the ring generated by A is the smallest ring containing A.
For a semi-ring S, the set of all finite unions of sets in S is the ring generated by S:
.
A contentμ defined on a semi-ring S can be extended on the ring generated by S. Such an extension is unique. The extended content can be written:
In addition, it can be proved that μ is a pre-measure if and only if the extended content is also a pre-measure, and that any pre-measure on R that extends the pre-measure on S is necessarily of this form.
Motivation
In measure theory, we are not interested in semi-rings and rings themselves, but rather in σ-algebras generated by them. The idea is that it is possible to build a pre-measure on a semi-ring S, which can then be extended to a pre-measure on R, which can finally be extended to a measure on a σ-algebra through Caratheodory's extension theorem. As σ-algebras generated by semi-rings and rings are the same, the difference does not really matter. Actually, Carathéodory's extension theorem can be slightly generalized by replacing ring by semi-field. The definition of semi-ring may seem a bit convoluted, but the following example shows why it is useful.
Let be a ring on and let be a pre-measure on R, i.e. for all sets for which there exists a countable decomposition in disjoint sets, we have. Let σ be the σ-algebra generated by R. The pre-measure condition is a necessary condition for to be the restriction to R of a measure on. The Carathéodory's extension theorem states that it is also sufficient, i.e. there exists a measure such that is an extension of μ.. Moreover, if μ is σ-finite then the extension is unique.
Examples
Non-uniqueness of extension
Here are some examples where there is more than one extension of a pre-measure to the generated σ-algebra. For the first example, take the algebra generated by all half-open intervals a,b) on the [real line, and give such intervals measure infinity if they are non-empty. The Caratheodory extension gives all non-empty sets measure infinity. Another extension is given by counting measure. Here is a second example, closely related to the failure of some forms of Fubini's theorem for spaces that are not σ-finite. Suppose that X is the unitinterval with Lebesgue measure and Y is the unit interval with the discrete counting measure. Let the ring R be generated by products A×B where A is Lebesgue measurable and B is any subset, and give this set the measure μcard. This has a very large number of different extensions to a measure; for example:
The measure of a subset is the sum of the measures of its horizontal sections. This is the smallest possible extension. Here the diagonal has measure 0.
The measure of a subset is where n is the number of points of the subset with given x-coordinate. The diagonal has measure 1.
The Caratheodory extension, which is the largest possible extension. Any subset of finite measure is contained in some union of a countable number of horizontal lines. In particular the diagonal has measure infinity.