Breakthrough Starshot
Breakthrough Starshot is a research and engineering project by the Breakthrough Initiatives to develop a proof-of-concept fleet of light sail spacecraft named StarChip, to be capable of making the journey to the Alpha Centauri star system 4.37 light-years away. It was founded in 2016 by Yuri Milner, Stephen Hawking, and Mark Zuckerberg.
A flyby mission has been proposed to Proxima Centauri b, an Earth-sized exoplanet in the habitable zone of its host star, Proxima Centauri, in the Alpha Centauri system. At a speed between 15% and 20% of the speed of light, it would take between twenty to thirty years to complete the journey, and approximately four years for a return message from the starship to Earth.
The conceptual principles to enable this interstellar travel project were described in "A Roadmap to Interstellar Flight", by Philip Lubin of UC Santa Barbara. Sending the lightweight spacecraft involves a multi-kilometer phased array of beam-steerable lasers with a combined coherent power output of up to 100 GW.
General
The project was announced on 12 April 2016 in an event held in New York City by physicist and venture capitalist Yuri Milner, together with cosmologist Stephen Hawking, who was serving as board member of the initiatives. Other board members include Facebook CEO Mark Zuckerberg. The project has an initial funding of US$100 million to initialize research. Milner places the final mission cost at $5–10 billion, and estimates the first craft could launch by around 2036. Pete Worden is the project's executive director and Harvard Professor Avi Loeb chairs the advisory board for the project.Leaders
Management and Advisory Committee- Pete Worden, Executive Director, Breakthrough Starshot; former Director of NASA Ames Research Center
- Avi Loeb, Chairman, Breakthrough Starshot Advisory Committee; Harvard University
- Jim Benford, Microwave Sciences
- Steven Chu, Nobel Prize winner, Stanford University
- Bruce Draine, Princeton University
- Ann Druyan, Cosmos Studios
- Louis Friedman, Planetary Society, JPL
- Robert Fugate, Arctelum, LLC, New Mexico Tech
- Giancarlo Genta, Polytechnic University of Turin
- Olivier Guyon, University of Arizona
- Mae Jemison, 100 Year Starship
- Joan Johnson-Freese, US Naval War College
- Pete Klupar, Director of Engineering, Breakthrough Starshot; former Director of Engineering, NASA Ames Research Center
- Jeff Kuhn, University of Hawaii Institute for Astronomy
- Geoff Landis, SA Glenn Research Center
- Kelvin Long, Journal of the British Interplanetary Society
- Greg Matloff, New York City College of Technology
- Claire Max, University of California, Santa Cruz
- Kaya Nobuyuki, Kobe University
- Kevin Parkin, Parkin Research
- Mason Peck, Cornell University
- Saul Perlmutter, Nobel Prize winner, Breakthrough Prize winner, UC Berkeley and Lawrence Berkeley National Laboratory
- Martin Rees, Astronomer Royal
- Roald Sagdeev, University of Maryland
- Ed Turner, Princeton University, NAOJ
Objectives
Target planet
The European Southern Observatory announced the detection of a planet orbiting the third star in the Alpha Centauri system, Proxima Centauri in August 2016. The planet, called Proxima Centauri b, orbits within the habitable zone of its star. It could be a target for one of the Breakthrough Initiatives' projects.In January 2017, Breakthrough Initiatives and the European Southern Observatory began collaborating to search for habitable planets in the nearby star system Alpha Centauri. The agreement involves Breakthrough Initiatives providing funding for an upgrade to the VISIR instrument on ESO's Very Large Telescope in Chile. This upgrade will increase the likelihood of planet detection in the system.
Concept
The Starshot concept envisions launching a "mothership" carrying about a thousand tiny spacecraft to a high-altitude Earth orbit for deployment. A phased array of ground-based lasers would then focus a light beam on the crafts' sails to accelerate them one by one to the target speed within 10 minutes, with an average acceleration on the order of 100 km/s2, and an illumination energy on the order of 1 TJ delivered to each sail. A preliminary sail model is suggested to have a surface area of 4 m × 4 m. An October 2017 presentation of the Starshot system model examined circular sails and finds that the beam director capital cost is minimized by having a sail diameter of 5 meters.The Earth-sized planet Proxima Centauri b is part of the Alpha Centauri system habitable zones. Ideally, the Breakthrough Starshot would aim its spacecraft within one astronomical unit of that world. From this distance, a craft's cameras could capture an image of high enough resolution to resolve surface features.
The fleet would have about 1000 spacecraft. Each one, called a StarChip, would be a very small centimeter-sized vehicle weighing a few grams. They would be propelled by a square-kilometre array of 10 kW ground-based lasers with a combined output of up to 100 GW. A swarm of about 1000 units would compensate for the losses caused by interstellar dust collisions en route to the target. In a detailed study in 2016 Thiem Hoang and coauthors found that mitigating the collisions with dust, hydrogen and galactic cosmic rays may not be as severe an engineering problem as first thought.
Technical challenges
requires enormous power: a laser with a gigawatt of power would provide only a few newtons of thrust. The spaceship will compensate for the low thrust by having a mass of only a few grams. The camera, computer, communications laser, a nuclear power source, and the solar sail must be miniaturized to fit within a mass limit. All components must be engineered to endure extreme acceleration, cold, vacuum, and protons. The spacecraft will have to survive collisions with space dust; Starshot expects each square centimeter of frontal cross-section to collide at high speed with about a thousand particles of size at least 0.1 μm. Focusing a set of lasers totaling one hundred gigawatts onto the solar sail will be difficult due to atmospheric turbulence, so there is the suggestion to use space-based laser infrastructure. According to The Economist, at least a dozen off-the-shelf technologies will need to improve by orders of magnitude.StarChip
StarChip is the name used by Breakthrough Initiatives for a very small, centimeter-sized, gram-scale, interstellar spacecraft envisioned for the Breakthrough Starshot program, a proposed mission to propel a fleet of a thousand StarChips on a journey to the Alpha Centauri star system, the nearest extrasolar stars, about 4.37 light-years from Earth. The journey may include a flyby of Proxima Centauri b, an Earth-sized exoplanet that is in the habitable zone of its host star. The ultra-light StarChip robotic nanocraft, fitted with light sails, are planned to travel at speeds of 20% and 15% of the speed of light, taking between 20 and 30 years to reach the star system, respectively, and about 4 years to notify Earth of a successful arrival. The conceptual principles to enable practical interstellar travel were described in "A Roadmap to Interstellar Flight", by Philip Linden of UC Santa Barbara, who is an advisor to the Starshot project.In July 2017, scientists announced that precursors to StarChip, called Sprites, were successfully launched and flown through Polar Satellite Launch Vehicle by ISRO from Satish Dhawan Space Centre. Sprites were also to be flown on the KickSat-2 mission that was scheduled for November 2018.
Components
Each StarChip nanocraft is expected to carry miniaturized cameras, navigation gear, communication equipment, photon thrusters and a power supply. In addition, each nanocraft would be fitted with a meter-scale light sail, made of lightweight materials, with a gram-scale mass.Cameras
Five sub-gram scale digital cameras, each with a minimum 2-megapixels resolution, are envisioned.Processors
Four sub-gram scale processors are planned.Photon thrusters
Four sub-gram scale photon thrusters, each minimally capable of performing at a 1W diode laser level, are planned.Battery
A 150 mg atomic battery, powered by plutonium-238 or americium-241, is planned.Protective coating
A coating, possibly made of beryllium copper, is planned to protect the nanocraft from dust collisions and atomic particle erosion.Light sail
The light sail is envisioned to be no larger than, possibly of composite graphene-based material. The material would have to be very thin and be able to reflect the laser beam while absorbing only a small fraction of the incident energy, or it will vaporize the sail. The light sail may also double as power source during cruise, because collisions with atoms of interstellar medium would deliver 60 Watt/m2 of power.Laser data transmitter
Laser communicator, utilizing light sail as the primary reflector, would be capable of data rates 2.6-15 baud per watt of transmitted power at distance to the Alpha Centauri, assuming 30m diameter receiving telescope on Earth.Other potential destinations
The table below lists possible target stars for similar photogravitational assist travel. The travel times are for the spacecraft to travel to the star and then enter orbit around the star.Name | Travel time | Distance | Luminosity |
Proxima Centauri | 121 | 4.2 | 0.00005 |
α Centauri A | 101.25 | 4.36 | 1.52 |
α Centauri B | 147.58 | 4.36 | 0.50 |
Sirius A | 68.90 | 8.58 | 24.20 |
Procyon A | 154.06 | 11.44 | 6.94 |
Vega | 167.39 | 25.02 | 50.05 |
Altair | 176.67 | 16.69 | 10.70 |
Fomalhaut A | 221.33 | 25.13 | 16.67 |
Denebola | 325.56 | 35.78 | 14.66 |
Castor A | 341.35 | 50.98 | 49.85 |
Epsilon Eridani | 363.35 | 10.50 | 0.50 |
- Successive assists at α Cen A and B could allow travel times to 75 yr to both stars.
- The light sail has a nominal mass-to-surface ratio of 8.6×10−4 gram m−2 for a nominal graphene-class sail.
- Area of the light sail, about 105 m2 = 2
- Velocity up to 37,300 km s−1
Other applications