Bismuth ferrite is not a naturally occurringmineral and several synthesis routes to obtain the compound have been developed.
Solid state synthesis
In the solid state reaction method bismuth oxide and ironoxide in a 1:1 mole ratio are mixed with a mortar or by ball milling and then fired at elevated temperatures. Preparation of pure stoichiometric BiFeO3 is challenging due to the volatility of bismuth during firing which leads to the formation of stable secondary Bi25FeO39 and Bi2Fe4O9 phase. Typically a firing temperature of 800 to 880 Celsius is used for 5 to 60 minutes with rapid subsequent cooling. Excess Bi2O3 has also been used a measure to compensate for bismuth volatility and to avoid formation of the Bi2Fe4O9 phase.
Bismuth ferrite melts incongruently, but it can be grown from a bismuth oxide rich flux. High quality single crystals have been important for studying the ferroelectric, antiferromagnetic and magnetoelectric properties of bismuth ferrite.
Chemical routes
Wet chemical synthesis routes based on sol-gel chemistry, modified Pechini routes, hydrothermal synthesis and precipitation have been used to prepare phase pure BiFeO3. The advantage of the chemical routes is the compositional homogeneity of the precursors and the reduced loss of bismuth due to the much lower temperatures needed. In sol-gel routes, an amorphous precursor is calcined at 300-600 Celsius to remove organic residuals and to promote crystallization of the bismuth ferrite perovskite phase, while the disadvantage is that the resulting powder must be sintered at high temperature to make a dense polycrystal. Solution combustion reaction is a low-cost method used to synthesize porous BiFeO3. In this method, a reducing agent and an oxidizing agent are used to generate the reduction-oxidation reaction. The appearance of the flame, and consequently the temperature of the mixture, depends on the oxidizing/reducing agents ratio used. Annealing up to 600 °C is sometimes needed to decompose the bismuth oxo-nitrates generated as intermediates. Since the content of Fe cations in this semiconductor material, Mӧssbauer spectroscopy is a proper technique to detect the presence of a paramagnetic component in the phase.
Being a room temperature multiferroic material and due to its ferroelectric photovoltaic effect, bismuth ferrite has several applications in the field of magnetism, spintronics, photovoltaics, etc.
Photovoltaics
In the FPV effect, a photocurrent is generated in a ferroelectric material under illumination and its direction is dependent upon the ferroelectric polarization of that material. The FPV effect has a promising potential as an alternative to conventional photovoltaic devices. But the main hindrance is that a very small photocurrent is generated in ferroelectric materials like LiNbO3, which is due to its large bandgap and low conductivity. In this direction bismuth ferrite has shown a great potential since a large photocurrent effect and above bandgap voltage is observed in this material under illumination. Most of the works using bismuth ferrite as a photovoltaic material has been reported on its thin film form but in a few reports researchers have formed a bilayer structure with other materials like polymers, graphene and other semiconductors. In a report p-i-nheterojunction has been formed with bismuth ferrite nanoparticles along with two oxide based carrier transporting layers. In spite of such efforts the power conversion efficiency obtained from bismuth ferrite is still very low.