Barium


Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Its hydroxide, known in pre-modern times as baryta, does not occur as a mineral, but can be prepared by heating barium carbonate.
The most common naturally occurring minerals of barium are barite and witherite, both insoluble in water. The name barium originates from the alchemical derivative "baryta", from Greek βαρύς, meaning "heavy". Baric is the adjectival form of barium. Barium was identified as a new element in 1774, but not reduced to a metal until 1808 with the advent of electrolysis.
Barium has few industrial applications. Historically, it was used as a getter for vacuum tubes and in oxide form as the emissive coating on indirectly heated cathodes. It is a component of YBCO and electroceramics, and is added to steel and cast iron to reduce the size of carbon grains within the microstructure. Barium compounds are added to fireworks to impart a green color. Barium sulfate is used as an insoluble additive to oil well drilling fluid, as well as in a purer form, as X-ray radiocontrast agents for imaging the human gastrointestinal tract. The soluble barium ion and soluble compounds are poisonous, and have been used as rodenticides.

Characteristics

Physical properties

Barium is a soft, silvery-white metal, with a slight golden shade when ultrapure. The silvery-white color of barium metal rapidly vanishes upon oxidation in air yielding a dark gray oxide layer. Barium has a medium specific weight and good electrical conductivity. Ultrapure barium is very difficult to prepare, and therefore many properties of barium have not been accurately measured yet.
At room temperature and pressure, barium has a body-centered cubic structure, with a barium–barium distance of 503 picometers, expanding with heating at a rate of approximately 1.8/°C. It is a very soft metal with a Mohs hardness of 1.25. Its melting temperature of is intermediate between those of the lighter strontium and heavier radium ; however, its boiling point of exceeds that of strontium. The density is again intermediate between those of strontium and radium.

Chemical reactivity

Barium is chemically similar to magnesium, calcium, and strontium, but even more reactive. It always exhibits the oxidation state of +2. Most exceptions are in a few rare and unstable molecular species that are only characterised in the gas phase such as BaF, but recently a barium species has been reported in a graphite intercalation compound. Reactions with chalcogens are highly exothermic ; the reaction with oxygen or air occurs at room temperature, and therefore barium is stored under oil or in an inert atmosphere. Reactions with other nonmetals, such as carbon, nitrogen, phosphorus, silicon, and hydrogen, are generally exothermic and proceed upon heating. Reactions with water and alcohols are very exothermic and release hydrogen gas:
Barium reacts with ammonia to form complexes such as Ba6.
The metal is readily attacked by most acids. Sulfuric acid is a notable exception because passivation stops the reaction by forming the insoluble barium sulfate on the surface. Barium combines with several metals, including aluminium, zinc, lead, and tin, forming intermetallic phases and alloys.

Compounds

Barium salts are typically white when solid and colorless when dissolved, and barium ions provide no specific coloring. They are denser than the strontium or calcium analogs, except for the halides.
Barium hydroxide was known to alchemists, who produced it by heating barium carbonate. Unlike calcium hydroxide, it absorbs very little CO2 in aqueous solutions and is therefore insensitive to atmospheric fluctuations. This property is used in calibrating pH equipment.
Volatile barium compounds burn with a green to pale green flame, which is an efficient test to detect a barium compound. The color results from spectral lines at 455.4, 493.4, 553.6, and 611.1 nm.
Organobarium compounds are a growing field of knowledge: recently discovered are dialkylbariums and alkylhalobariums.

Isotopes

Barium found in the Earth's crust is a mixture of seven primordial nuclides, barium-130, 132, and 134 through 138. Barium-130 undergoes very slow radioactive decay to xenon-130 by double beta plus decay, with a half-life of ×1021 years. Its abundance is ≈0.1% that of natural barium. Theoretically, barium-132 can similarly undergo double beta decay to xenon-132; this decay has not been detected. The radioactivity of these isotopes are so weak that they pose no danger to life.
Of the stable isotopes, barium-138 composes 71.7% of all barium; other isotopes have decreasing abundance with decreasing mass number.
In total, barium has about 40 known isotopes, ranging in mass between 114 and 153. The most stable artificial radioisotope is barium-133 with a half-life of approximately 10.51 years. Five other isotopes have half-lives longer than a day. Barium also has 10 meta states, of which barium-133m1 is the most stable with a half-life of about 39 hours.

History

Alchemists in the early Middle Ages knew about some barium minerals. Smooth pebble-like stones of mineral baryte were found in volcanic rock near Bologna, Italy, and so were called "Bologna stones". Alchemists were attracted to them because after exposure to light they would glow for years. The phosphorescent properties of baryte heated with organics were described by V. Casciorolus in 1602.
Carl Scheele determined that baryte contained a new element in 1774, but could not isolate barium, only barium oxide. Johan Gottlieb Gahn also isolated barium oxide two years later in similar studies. Oxidized barium was at first called "barote" by Guyton de Morveau, a name that was changed by Antoine Lavoisier to baryta. Also in the 18th century, English mineralogist William Withering noted a heavy mineral in the lead mines of Cumberland, now known to be witherite. Barium was first isolated by electrolysis of molten barium salts in 1808 by Sir Humphry Davy in England. Davy, by analogy with calcium, named "barium" after baryta, with the "-ium" ending signifying a metallic element. Robert Bunsen and Augustus Matthiessen obtained pure barium by electrolysis of a molten mixture of barium chloride and ammonium chloride.
The production of pure oxygen in the Brin process was a large-scale application of barium peroxide in the 1880s, before it was replaced by electrolysis and fractional distillation of liquefied air in the early 1900s. In this process barium oxide reacts at with air to form barium peroxide, which decomposes above by releasing oxygen:
Barium sulfate was first applied as a radiocontrast agent in X-ray imaging of the digestive system in 1908.

Occurrence and production

The abundance of barium is 0.0425% in the Earth's crust and 13 μg/L in sea water. The primary commercial source of barium is baryte, a barium sulfate mineral. with deposits in many parts of the world. Another commercial source, far less important than baryte, is witherite, a barium carbonate mineral. The main deposits are located in England, Romania, and the former USSR.
The baryte reserves are estimated between 0.7 and 2 billion tonnes. The maximum production, 8.3 million tonnes, was produced in 1981, but only 7–8% was used for barium metal or compounds. Baryte production has risen since the second half of the 1990s from 5.6 million tonnes in 1996 to 7.6 in 2005 and 7.8 in 2011. China accounts for more than 50% of this output, followed by India, Morocco, US, Turkey, Iran and Kazakhstan.
The mined ore is washed, crushed, classified, and separated from quartz. If the quartz penetrates too deeply into the ore, or the iron, zinc, or lead content is abnormally high, then froth flotation is used. The product is a 98% pure baryte ; the purity should be no less than 95%, with a minimal content of iron and silicon dioxide. It is then reduced by carbon to barium sulfide:
The water-soluble barium sulfide is the starting point for other compounds: reacting BaS with oxygen produces the sulfate, with nitric acid the nitrate, with carbon dioxide the carbonate, and so on. The nitrate can be thermally decomposed to yield the oxide. Barium metal is produced by reduction with aluminium at. The intermetallic compound BaAl4 is produced first:
BaAl4 is an intermediate reacted with barium oxide to produce the metal. Note that not all barium is reduced.
The remaining barium oxide reacts with the formed aluminium oxide:
and the overall reaction is
Barium vapor is condensed and packed into molds in an atmosphere of argon. This method is used commercially, yielding ultrapure barium. Commonly sold barium is about 99% pure, with main impurities being strontium and calcium and other contaminants contributing less than 0.1%.
A similar reaction with silicon at yields barium and barium metasilicate. Electrolysis is not used because barium readily dissolves in molten halides and the product is rather impure.
in San Benito County where it was first found.

Gemstone

The barium mineral, benitoite, occurs as a very rare blue fluorescent gemstone, and is the official state gem of California.

Applications

Metal and alloys

Barium, as a metal or when alloyed with aluminium, is used to remove unwanted gases from vacuum tubes, such as TV picture tubes. Barium is suitable for this purpose because of its low vapor pressure and reactivity towards oxygen, nitrogen, carbon dioxide, and water; it can even partly remove noble gases by dissolving them in the crystal lattice. This application is gradually disappearing due to the rising popularity of the tubeless LCD and plasma sets.
Other uses of elemental barium are minor and include an additive to silumin that refines their structure, as well as
is important to the petroleum industry as a drilling fluid in oil and gas wells. The precipitate of the compound is used in paints and varnishes; as a filler in ringing ink, plastics, and rubbers; as a paper coating pigment; and in nanoparticles, to improve physical properties of some polymers, such as epoxies.
Barium sulfate has a low toxicity and relatively high density of ca. 4.5 g/cm3. For this reason it is used as a radiocontrast agent in X-ray imaging of the digestive system. Lithopone, a pigment that contains barium sulfate and zinc sulfide, is a permanent white with good covering power that does not darken when exposed to sulfides.

Other barium compounds

Other compounds of barium find only niche applications, limited by the toxicity of Ba2+ ions, which is not a problem for the insoluble BaSO4.
Because of the high reactivity of the metal, toxicological data are available only for compounds. Soluble barium compounds are poisonous. In low doses, barium ions act as a muscle stimulant, and higher doses affect the nervous system, causing cardiac irregularities, tremors, weakness, anxiety, shortness of breath, and paralysis. This toxicity may be caused by Ba2+ blocking potassium ion channels, which are critical to the proper function of the nervous system. Other organs damaged by water-soluble barium compounds are the eyes, immune system, heart, respiratory system, and skin causing, for example, blindness and sensitization.
Barium is not carcinogenic and does not bioaccumulate. Inhaled dust containing insoluble barium compounds can accumulate in the lungs, causing a benign condition called baritosis. The insoluble sulfate is nontoxic and is not classified as a dangerous goods in transport regulations.
To avoid a potentially vigorous chemical reaction, barium metal is kept in an argon atmosphere or under mineral oils. Contact with air is dangerous and may cause ignition. Moisture, friction, heat, sparks, flames, shocks, static electricity, and exposure to oxidizers and acids should be avoided. Anything that may contact with barium should be electrically grounded. Anyone who works with the metal should wear pre-cleaned non-sparking shoes, flame-resistant rubber clothes, rubber gloves, apron, goggles, and a gas mask. Smoking in the working area is typically forbidden. Thorough washing is required after handling barium.