Avogadro constant


The Avogadro constant is the proportionality factor that relates the number of constituent particles in a sample with the amount of substance in that sample. Its SI unit is the reciprocal mole, and it is defined as It is named after the Italian scientist Amedeo Avogadro.
The numeric value of the Avogadro constant expressed in reciprocal mole, a dimensionless number, is called the Avogadro number, sometimes denoted N or N0, which is thus the number of particles that are contained in one mole, exactly.
The value of the Avogadro constant was chosen so that the mass of one mole of a chemical compound, in grams, is numerically equal to the average mass of one molecule of the compound, in daltons ; one dalton being of the mass of one carbon-12 atom, which is approximately the mass of one nucleon. For example, the average mass of one molecule of water is about 18.0153 daltons, and one mole of water is about 18.0153 grams. Thus, the Avogadro constant NA is the proportionality factor that relates the molar mass of a substance to the average mass of one molecule, and the Avogadro number is also the approximate number of nucleons in one gram of ordinary matter.
The Avogadro constant also relates the molar volume of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about 18 mL/mol, the volume occupied by one molecule of water is about mL, or about 30 Å3. For a crystaline substance, it similarly relates its molar volume, the volume of the repeating unit cell of the crystals, and the number of molecules in that cell.
The Avogadro number has been defined in many different ways through its long history. Its approximate value was first determined, indirectly, by Josef Loschmidt in 1865. It was initially defined by Jean Perrin as the number of atoms in 16 grams of oxygen. It was later redefined in the 14th conference of the International Bureau of Weights and Measures as the number of atoms in 12 grams of the isotope carbon-12. In each case, the mole was defined as the quantity of a substance that contained the same number of atoms as those reference samples. In particular, when carbon-12 was the reference, one mole of carbon-12 was exactly 12 grams of the element.
These definitions meant that the value of the Avogadro number depended on the experimentally determined value of the mass of one atom of those elements, and therefore it was known only to a limited number of decimal digits. However, in its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro number as the exact value, and redefined the mole as the amount of a substance under consideration that contains N constituent particles of the substance. Under the new definition, the mass of one mole of any substance is N times the average mass of one of its constituent particles—a physical quantity whose precise value has to be determined experimentally for each substance.

History

Origin of the concept

The Avogadro constant is named after the Italian scientist Amedeo Avogadro, who, in 1811, first proposed that the volume of a gas is proportional to the number of atoms or molecules regardless of the nature of the gas.
The name Avogadro's number was coined in 1909 by the physicist Jean Perrin, who defined it as the number of molecules in exactly 32 grams of oxygen. The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the law of definite proportions, was the natural unit of atomic mass, and was assumed to be 1/16 of the atomic mass of oxygen.

First measurements

The value of Avogadro's number was first obtained indirectly by Josef Loschmidt in 1865, by estimating the number of particles in a given volume of gas. This value, the number density n0 of particles in an ideal gas, is now called the Loschmidt constant in his honor, and is related to the Avogadro constant, NA, by
where p0 is the pressure, R is the gas constant, and T0 is the absolute temperature. Because of this work, the symbol L is sometimes used for the Avogadro constant, and, in German literature, that name may be used for both constants, distinguished only by the units of measurement.
Perrin himself determined Avogadro's number by several different experimental methods. He was awarded the 1926 Nobel Prize in Physics, largely for this work.
The electric charge per mole of electrons is a constant called the Faraday constant and had been known since 1834 when Michael Faraday published his works on electrolysis. In 1910, Robert Millikan obtained the first measurement of the charge on an electron. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.

SI definition of 1971

In 1971 the International Bureau of Weights and Measures decided to regard the amount of substance as an independent dimension of measurement, with the mole as its base unit in the International System of Units. Specifically, the mole was defined as an amount of a substance that contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12.
By this definition, the common rule of thumb "one gram of matter contains N0 nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. On the other hand, one mole of any substance contained exactly as many molecules as one mole of any other substance.
As a consequence of this definition, in the SI system the Avogadro constant NA had the dimensionality of reciprocal of amount of substance rather than of a pure number, and had the approximate value with units of mol−1. By this definition, the value of NA inherently had to be determined experimentally.
The IBPM also named NA the "Avogadro constant", but the term "Avogadro number" continued to be used especially in introductory works.

SI redefinition of 2019

In 2017, the IBPM decided to change the definitions of mole and amount of substance. The mole was redefined as being the amount of substance containing exactly elementary entities. One consequence of this change is that the mass of a mole of 12C atoms is no longer exactly 0.012 kg. On the other hand, the dalton remains unchanged as 1/12 of the mass of 12C. Thus, the molar mass constant is no longer exactly 1 g/mol, although the difference is insignificant for practical purposes.

The Avogadro constant in other unit systems

In other measurement systems where the unit of amount of substance is not the SI mole, the Avogadro constant NA is taken to mean the number of particles in said unit, and will have a different value.
For example, if quantities of a substance are measured in pound-mole, then the Avogadro constant NA is lb-mol−1. If the ounce-mole is used instead, NA is oz-mol−1. However, these units are hardly used nowadays.

Connection to other constants

The Avogadro constant, NA is related to other physical constants and properties.