Analytic function


In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions, categories that are similar in some ways, but different in others. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not hold generally for real analytic functions. A function is analytic if and only if its Taylor series about x0 converges to the function in some neighborhood for every x0 in its domain.

Definitions

Formally, a function is real analytic on an open set in the real line if for any one can write
in which the coefficients are real numbers and the series is convergent to for in a neighborhood of.
Alternatively, an analytic function is an infinitely differentiable function such that the Taylor series at any point in its domain
converges to for in a neighborhood of pointwise. The set of all real analytic functions on a given set is often denoted by.
A function defined on some subset of the real line is said to be real analytic at a point if there is a neighborhood of on which is real analytic.
The definition of a complex analytic function is obtained by replacing, in the definitions above, "real" with "complex" and "real line" with "complex plane". A function is complex analytic if and only if it is holomorphic i.e. it is complex differentiable. For this reason the terms "holomorphic" and "analytic" are often used interchangeably for such functions.

Examples

Typical examples of analytic functions are:
Typical examples of functions that are not analytic are:
The following conditions are equivalent:
1. is real analytic on an open set.
2. There is a complex analytic extension of to an open set which contains.
3. is real smooth and for every compact set there exists a constant such that for every and every non-negative integer the following bound holds
Complex analytic functions are exactly equivalent to holomorphic functions, and are thus much more easily characterized.
For the case of an analytic function with several variables, the real analyticity can be characterized using the Fourier–Bros–Iagolnitzer transform. The third characterization has also a direct generalization for the multivariate case.

Properties of analytic functions

A polynomial cannot be zero at too many points unless it is the zero polynomial. A similar but weaker statement holds for analytic functions. If the set of zeros of an analytic function ƒ has an accumulation point inside its domain, then ƒ is zero everywhere on the connected component containing the accumulation point. In other words, if is a sequence of distinct numbers such that ƒ = 0 for all n and this sequence converges to a point r in the domain of D, then ƒ is identically zero on the connected component of D containing r. This is known as the Principle of Permanence.
Also, if all the derivatives of an analytic function at a point are zero, the function is constant on the corresponding connected component.
These statements imply that while analytic functions do have more degrees of freedom than polynomials, they are still quite rigid.

Analyticity and differentiability

As noted above, any analytic function is infinitely differentiable. There exist smooth real functions that are not analytic: see non-analytic smooth function. In fact there are many such functions.
The situation is quite different when one considers complex analytic functions and complex derivatives. It can be proved that any complex function differentiable in an open set is analytic. Consequently, in complex analysis, the term analytic function is synonymous with holomorphic function.

Real versus complex analytic functions

Real and complex analytic functions have important differences. Analyticity of complex functions is a more restrictive property, as it has more restrictive necessary conditions and complex analytic functions have more structure than their real-line counterparts.
According to Liouville's theorem, any bounded complex analytic function defined on the whole complex plane is constant. The corresponding statement for real analytic functions, with the complex plane replaced by the real line, is clearly false; this is illustrated by
Also, if a complex analytic function is defined in an open ball around a point x0, its power series expansion at x0 is convergent in the whole open ball. This statement for real analytic functions is not true in general; the function of the example above gives an example for x0 = 0 and a ball of radius exceeding 1, since the power series diverges for |x| > 1.
Any real analytic function on some open set on the real line can be extended to a complex analytic function on some open set of the complex plane. However, not every real analytic function defined on the whole real line can be extended to a complex function defined on the whole complex plane. The function ƒ defined in the paragraph above is a counterexample, as it is not defined for x = ±i. This explains why the Taylor series of ƒ diverges for |x| > 1, i.e., the radius of convergence is 1 because the complexified function has a pole at distance 1 from the evaluation point 0 and no further poles within the open disc of radius 1 around the evaluation point.

Analytic functions of several variables

One can define analytic functions in several variables by means of power series in those variables. Analytic functions of several variables have some of the same properties as analytic functions of one variable. However, especially for complex analytic functions, new and interesting phenomena show up when working in 2 or more dimensions: