Alfa-class submarine
The Alfa class, Soviet designation Project 705 Lira, was a class of nuclear-powered attack submarines in service with the Soviet Navy and later with the Russian Navy. They were the fastest military submarines ever built, with only the prototype submarine exceeding them in submerged speed.
The Project 705 submarines had a unique design among other submarines. In addition to the revolutionary use of titanium for its hull, it used a powerful lead-bismuth cooled fast reactor as a power source, which greatly reduced the size of the reactor compared to conventional designs, thus reducing the overall size of the submarine, and allowing for very high speeds. However, it also meant that the reactor had a short lifetime and had to be kept warm when it was not being used. As a result, the submarines were used as interceptors, mostly kept in port ready for a high-speed dash into the North Atlantic.
Design and development
Preproduction
Project 705 was first proposed in 1957 by M. G. Rusanov and the initial design work led by Rusanov began in May 1960 in Leningrad with design task assigned to SKB-143, one of the two predecessors of the Malakhit Design Bureau, which would eventually become one of the three Soviet/Russian submarine design centers, along with Rubin Design Bureau and Lazurit Central Design Bureau.The project was highly innovative in order to meet demanding requirements: sufficient speed to successfully pursue any ship; the ability to avoid anti-submarine weapons and to ensure success in underwater combat; low detectability, in particular to airborne MAD arrays, and also especially to active sonars; minimal displacement; and minimal crew complement.
A special titanium alloy hull would be used to create a small, low drag, 1,500 ton, six compartment vessel capable of very high speeds and deep diving. The submarine would operate as an interceptor, staying in harbor or on patrol route and then racing out to reach an approaching fleet. A high-power liquid-metal-cooled nuclear plant was devised, which was kept liquid in port through external heating. Extensive automation would also greatly reduce the needed crew numbers to just 16 men.
The practical problems with the design quickly became apparent and in 1963 the design team was replaced and a less radical design was proposed, increasing all main dimensions and the vessel weight by 800 tons and almost doubling the crew.
A prototype of a similar design, the Project 661 or K-162 cruise missile submarine, was built at the SEVMASH shipyard in Severodvinsk and completed in 1972. The long build time was caused by numerous design flaws and difficulties in manufacture. Extensively tested, she was taken out of service following a reactor accident in 1980. She had a top speed of and a test depth of. This combined with other reports created some alarm in the U.S. Navy and prompted the rapid development of the ADCAP torpedo program and the Sea Lance missile programs projects. The creation of the high-speed Spearfish torpedo by the Royal Navy was also a response to the threat posed by the reported capabilities of submarines of the Project 705.
Production
Production started in 1964 as Project 705 with construction at both the Admiralty yard, Leningrad and at Sevmashpredpriyatiye, Severodvinsk. The lead boat – the K-64 – was built in Leningrad. Leningrad built three subsequent Project 705 submarines, and Severodvinsk built three Project 705K submarines. The first vessel was commissioned in 1971. Project 705 boats were intended to be experimental platforms themselves, to test all innovations and rectify their faults, that would afterwards found a new generation of submarines. This highly experimental nature mostly predetermined their future. In 1981, with the completion of the seventh vessel, production ended. All vessels were assigned to the Northern Fleet.Propulsion
The power plant for the boat was a lead-bismuth cooled fast reactor. Such reactors have a number of advantages over older types:- Due to higher coolant temperature, their energy efficiency is up to 1.5 times higher.
- Lifetime without refueling can be increased more easily, in part due to higher efficiency.
- Liquid lead-bismuth systems can't cause an explosion and quickly solidify in case of a leak, greatly improving safety.
- LCFRs are much lighter and smaller than water-cooled reactors, which was the primary factor when considering power plant choice for the Project 705 submarines.
Designed burst speed in tests was for all vessels, and speeds of could be sustained. Acceleration to top speed took one minute and reversing 180 degrees at full speed took just 40 seconds. This degree of maneuverability exceeds all other submarines and most torpedoes that were in service at the time. Indeed, during training the boats proved able to successfully evade torpedoes launched by other submarines, which required introduction of faster torpedoes such as the American ADCAP or British Spearfish. However, the price for this was a very high noise level at burst speed. According to U.S. Naval Intelligence, the tactical speed was similar to s.
Propulsion was provided to the screw by a 40,000 shp steam turbine, and two 100 kW electric thrusters on the tips of the stern stabilizers were used for quieter "creeping" and for emergency propulsion in the event of an engineering casualty. Electrical power was provided by two 1,500 kW turbogenerators, with a backup 500 kW diesel generator and a bank of 112 zinc-silver batteries.
The OK-550 plant was used on Project 705, but later, on 705K, the BM-40A plant was installed due to the low reliability of the OK-550. While more reliable, BM-40A still turned out to be much more demanding in maintenance than older pressurized water reactors. The issue was that the lead/bismuth eutectic solution solidifies at. If it ever hardened, it would be impossible to restart the reactor, since the fuel assemblies would be frozen in the solidified coolant. Thus, whenever the reactor is shut down, the liquid coolant must be heated externally with superheated steam. Near the piers where the submarines were moored, a special facility was constructed to deliver superheated steam to the vessels' reactors when the reactors were shut down. A smaller ship was also stationed at the pier to deliver steam from her steam plant to the Alfa submarines.
Coastal facilities were treated with much less attention than the submarines and often turned out unable to heat the submarines reactors. Consequently, the plants had to be kept running even while the subs were in harbor. The facilities completely broke down early in the 1980s and since then the reactors of all operational Alfas were kept constantly running. While the BM-40A reactors are able to work for many years without stopping, they were not specifically designed for such treatment and any serious reactor maintenance became impossible. This led to a number of failures, including coolant leaks and one reactor broken down and frozen while at sea. However, constantly running the reactors proved better than relying on the coastal facilities. Four vessels were decommissioned due to freezing of the coolant.
Both the OK-550 and the BM-40A designs were single-use reactors and could not be refueled as the coolant would inevitably freeze in the process. This was compensated for by a much longer lifetime on their only load, after which the reactors would be completely replaced. While such a solution could potentially decrease service times and increase reliability, it is still more expensive, and the idea of single-use reactors was unpopular in the 1970s. Furthermore, Project 705 does not have a modular design that would allow quick replacement of reactors, so such maintenance would take at least as long as refueling a normal submarine.
Hull
Like most Soviet nuclear submarines, Project 705 used a double hull, where the internal hull withstands the pressure and the outer one protects it and provides an optimal hydrodynamic shape. The gracefully curved outer hull and sail were highly streamlined for high submerged speed and maneuverability.Apart from the prototypes, all six Project 705 and 705K submarines were built with titanium alloy hulls, which was revolutionary in submarine design at the time due to the cost of titanium and the technologies and equipment needed to work with it. The difficulties in the engineering became apparent in the first submarine that was quickly decommissioned after cracks developed in the hull. Later, metallurgy and welding technology were improved and no hull problems were experienced on subsequent vessels. American intelligence services became aware of the use of titanium alloys in the construction by retrieving metal shavings that fell from a truck as it left the St. Petersburg ship yard.
The pressure hull was separated into six watertight compartments, of which only the third compartment was manned and others were accessible only for maintenance. The third compartment had reinforced spherical bulkheads that could withstand the pressure at the test depth and offered additional protection to the crew in case of attack. To further enhance survivability, the ship was equipped with an ejectable rescue capsule.
The original test depth required specified for Project 705 was 500 m, but after the preliminary design was completed, SKB-143 proposed relaxing this requirement to 400 m. Reducing test depth and thinning the pressure hull would make up for increases in weight of the reactor, sonar system, and transverse bulkheads. The common myth that the Alfas could dive to 1,000 m or deeper is rooted in Western intelligence estimates made during the Cold War.
Control system
A suite of new systems was developed for these submarines, including:- Akkord combat information and control system, which received and processed hydroacoustic, television, radar, and navigation data from other systems, determining the location, speed, and predicted trajectory of other ships, submarines, and torpedoes. Information was displayed on control terminals, along with recommendations for operating a single submarine, both for attack and torpedo evasion, or commanding a group of submarines.
- Sargan weapon control system controlling attack, torpedo homing, and use of countermeasures, both by human command and automatically if required.
- Okean automated hydroacoustic system that provided target data to other systems and eliminated the need for crew members working with detection equipment.
- Sozh navigation system and Boksit course control system, which integrated course, depth, trim, and speed control, for manual, automated, and programmed maneuvering.
- Ritm system controlling operation of all machinery aboard, eliminating the need for any personnel servicing reactor and other machinery, which was the main factor in reducing crew complement.
- Alfa radiation monitoring system.
- TV-1 television optical system for outside observation.
The main reason behind the small crew complement and high automation was not just to allow a reduction in the size of the submarine, but rather to provide an advantage in reaction speed by replacing long chains of command with instant electronics, speeding up any action.
General characteristics
- Displacement: 2,300 tons surfaced, 3,200 tons submerged
- Length: 81.4 m
- Beam: 9.5 m
- Draft: 7.6 m
- Depth:
- * Usual operation: 350 m
- * Test depth: 400 m
- * Crush depth: possibly over 1300 m, depth figure contradicted by an authoritative Russian publication.
- Compartments: 6
- Complement: 27 officers, 4–18 NCOs; Russian source: 32
- Reactor: OK-550 reactor or BM-40A reactor, lead-bismuth cooled fast reactor, 155 MW
- Steam turbines: OK-7K,
- Propulsion: 1 propeller
- Speed : ~
- Armament: 6 × 533 mm torpedo tubes:
- * 18–20 torpedoes SET-65A or SAET-60A
- * 18–20 SS-N-15 cruise missiles
- * 20–24 mines
- * a mix of the above
- Systems:
- * Topol MRK.50 surface search radar
- * Sozh navigation system radar
- * MG-21 Rosa underwater communications
- * Molniya satellite communications
- * Vint & Tissa radio communications antennas
- * Accord combat control system
- * Leningrad-705 fire control system
- * Ocean active/passive sonar
- * MG-24 luch mine detection sonar
- * Yenisei sonar intercept receiver
- * Bukhta ESM/ECM
- * Chrome-KM IFF
Impact
The Alfas were intended to be only the first of a new generation of light, fast submarines, and before their decommissioning, there was already a family of derivative designs, including Project 705D, armed with long-range 650 mm torpedoes, and the Project 705A ballistic missile variant that was intended be able to defend herself successfully against attack submarines, therefore not needing patrolled bastions. However, the main thrust of Russian/Soviet SSN development was instead focused toward the larger, quieter boats that eventually became the.
The technologies and solutions developed, tested, and perfected on Alfas formed the foundation for future designs. The suite of submarine control systems was later used in the Akula-class, or Project 971 attack submarines that have a crew of 50, more than the Alfa but still less than half as many as other attack submarines. The Akula-class submarines represent a hybrid of the Alfa and Victor III classes, combining the stealth and towed sonar array of the Victor III with the automation of the Alfa class.