Aerobic granulation


The biological treatment of wastewater in the sewage treatment plant is often accomplished using conventional activated sludge systems. These systems generally require large surface areas for treatment and biomass separation units due to the generally poor settling properties of the sludge. Aerobic granules are a type of sludge that can self-immobilize flocs and microorganisms into spherical and strong compact structures. The advantages of aerobic granular sludge are excellent settleability, high biomass retention, simultaneous nutrient removal and tolerance to toxicity. Recent studies show that aerobic granular sludge treatment could be a potentially good method to treat high strength wastewaters with nutrients, toxic substances.
The aerobic granular sludge usually is cultivated in SBR and applied successfully as a wastewater treatment for high strength wastewater, toxic wastewater and domestic wastewater. Compared with conventional aerobic granular processes for COD removal, current research focuses more on simultaneous nutrient removal, particularly COD, phosphorus and nitrogen, under pressure conditions, such as high salinity or thermophilic condition.
In recent years, new technologies have been developed to improve settlability. The use of aerobic granular sludge technology is one of them.

Context

Proponents of aerobic granular sludge technology claim "it will play an important role as an innovative technology alternative to the present activated sludge process in industrial and municipal wastewater treatment in the near future" and that it "can be readily established and profitably used in activated sludge plants". However, in 2011 it was characterised as "not yet established as a large-scale application... with limited and unpublished full-scale applications for municipal wastewater treatment."

Aerobic granular biomass

The following definition differentiates an aerobic granule from a simple floc with relatively good settling properties and came out of discussions which took place at the 1st IWA-Workshop Aerobic Granular Sludge in Munich :

Formation of aerobic granules

Granular sludge biomass is developed in sequencing batch reactors and without carrier materials. These systems fulfil most of the requirements for their formation as:
Granular activated sludge is also developed in flow-through reactors using the Hybrid Activated Sludge process, comprising an attached-growth reactor with short retention time upstream of a suspended growth reactor. The attached bacteria in the first reactor, known as a SMART unit, are exposed to a constant high COD, triggering the expression of high concentrations of hydrolytic enzymes in the EPS layer around the bacteria. The accelerated hydrolysis liberates soluble readily-degradable COD which promotes the formation of granular activated sludge.

Advantages

The development of biomass in the form of aerobic granules is being studied for its application in the removal of organic matter, nitrogen and phosphorus compounds from wastewater.
Aerobic granules in an aerobic SBR present several advantages compared to conventional activated sludge process such as:
The HYBACS process has the additional benefit of being a flow-through process, thus avoiding the complexities of SBR systems. It is also readily applied to the upgrading of existing flow-through activated sludge processes, by installing the attached growth reactors upstream of the aeration tank. Upgrading to granular activated sludge process enables the capacity of an existing wastewater treatment plant to be doubled.

Treatment of industrial wastewater

Synthetic wastewater was used in most of the works carried out with aerobic granules. These works were mainly focussed on the study of granules formation, stability and nutrient removal efficiencies under different operational conditions and their potential use to remove toxic compounds. The potential of this technology to treat industrial wastewater is under study, some of the results:
Aerobic granulation technology for the application in wastewater treatment is widely developed at laboratory scales. The large-scale experience is growing rapidly and multiple institutions are making efforts to improve this technology:
The feasibility study showed that the aerobic granular sludge technology seems very promising with pre-treatment and a GSBR with post-treatment proves to be more attractive than the reference activated sludge alternatives.
A sensitivity analysis shows that the GSBR technology is less sensitive to land price and more sensitive to rain water flow. Because of the high allowable volumetric load the footprint of the GSBR variants is only 25% compared to the references. However, the GSBR with only primary treatment cannot meet the present effluent standards for municipal wastewater, mainly because of exceeding the suspended solids effluent standard caused by washout of not well settleable biomass.

Full scale application

Aerobic granulation technology is already successfully applied for treatment of wastewater.